Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Квадратичные и линейные формы от нормальных случайных величин и их свойства





 

Пусть выборка из Рассмотрим квадратичную форму и m линейных форм , или в матричных обозначениях , где - матрица, удовлетворяющая условию , B – прямоугольная матрица порядка mxn, а - вектор.

Пусть О- матрица с нулевыми элементами, In - единичная матрица порядка n. Рассмотрим свойства квадратичной формы.

1. Если ВА=О, то функции Q и t независимы.

2. Рассмотрим 2 квадратичные формы и , если АВ=ВА=О, то и независимы.

3. Обозначим через tr A след квадратной матрицы (т.е. сумму ее диагональных элементов). Имеет место утверждение. Пусть и ранг А=r n. Если матрица А идемпотентна (A2=A), то и при этом r=tr A.

Теорема 4.1. (теорема Фишера)

Пусть – выборка из распределения . Тогда выборочное среднее и дисперсия независимы и при этом подчиняются следующим законам распределения , .

Доказательство. Перейдем к новым случайным величинам , , которые образуют выборку из N(0,1). Тогда и .

Поэтому достаточно доказать, что и независимы и при этом , .

Рассмотрим n – мерный вектор-столбец и (nxn)-матрицу . Заметим, что , а . Отсюда , где матрица A=In-B идемпотентна. Теперь , и, следовательно, по свойству 1), и -независимы.

Закон распределения очевиден. Так как tr A=tr In-tr B=n-1, то на основании свойства (3) .

 

Вопрос







Дата добавления: 2015-06-15; просмотров: 424. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия