Студопедия — Квадратичные и линейные формы от нормальных случайных величин и их свойства
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Квадратичные и линейные формы от нормальных случайных величин и их свойства






 

Пусть выборка из Рассмотрим квадратичную форму и m линейных форм , или в матричных обозначениях , где - матрица, удовлетворяющая условию , B – прямоугольная матрица порядка mxn, а - вектор.

Пусть О- матрица с нулевыми элементами, In - единичная матрица порядка n. Рассмотрим свойства квадратичной формы.

1. Если ВА=О, то функции Q и t независимы.

2. Рассмотрим 2 квадратичные формы и , если АВ=ВА=О, то и независимы.

3. Обозначим через tr A след квадратной матрицы (т.е. сумму ее диагональных элементов). Имеет место утверждение. Пусть и ранг А=r n. Если матрица А идемпотентна (A2=A), то и при этом r=tr A.

Теорема 4.1. (теорема Фишера)

Пусть – выборка из распределения . Тогда выборочное среднее и дисперсия независимы и при этом подчиняются следующим законам распределения , .

Доказательство. Перейдем к новым случайным величинам , , которые образуют выборку из N(0,1). Тогда и .

Поэтому достаточно доказать, что и независимы и при этом , .

Рассмотрим n – мерный вектор-столбец и (nxn)-матрицу . Заметим, что , а . Отсюда , где матрица A=In-B идемпотентна. Теперь , и, следовательно, по свойству 1), и -независимы.

Закон распределения очевиден. Так как tr A=tr In-tr B=n-1, то на основании свойства (3) .

 

Вопрос







Дата добавления: 2015-06-15; просмотров: 400. Нарушение авторских прав; Мы поможем в написании вашей работы!



Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия