Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ИНТЕРВАЛЬНЫЕ ОЦЕНКИ





Любая точечная оценка параметра представляет собой функцию T=T() выборки =(X1,X2,...,Xn), т.е. является случайной величиной. При каждой реализации выборки эта функция определяет единственное значение t=T() оценки, которое принимается за приближенное значение оцениваемой характеристики. Однако в каждом конкретном случае значение оценки может отличаться от значения параметра. Поэтому желательно знать и возможную погрешность, возникающую при использовании предлагаемой оценки. Например, указывая интервал (или область в случае векторного параметра), внутри которого с высокой вероятностью g находится точное значение оцениваемого параметра. При таком подходе говорят об интервальном или доверительном оценивании, а соответствующий интервал называют доверительным.

5.1. Понятие доверительного интервала

 

При статистической обработке результатов наблюдений часто необходимо не только найти оценку неизвестного параметра q, но и охарактеризовать точность этой оценки. С этой целью вводится понятие доверительного интервала. Рассмотрим доверительное оценивание скалярного параметра. При интервальном оценивании ищут две такие статистики T1=T1() и T2=T2(), что T1<T2, для которых при заданном gÎ(0,1) выполняется условие

(1)

в этом случае интервал (T1(),T2()) называют g-доверительным интервалом, вероятность g - доверительной вероятностью, а величина q=1-g - уровнем значимости. T1() и T2() - называются нижней и верхней доверительными границами соответственно. Таким образом g-доверительный интервал – это случайный интервал в параметрическом множестве Q:(T1,T2)ÌQ, зависящий от выборки (но не от q), который содержит (накрывает) истинное значение неизвестного параметра q с вероятностью, не меньшей g.

Условие (1) означает, что в большой серии независимых экспериментов, в каждом из которых получена выборка объема n в среднем g×100% из общего числа построенных доверительных интервалов содержит истинное значение параметра q. Длина доверительного интервала, характеризующая точность интервального оценивания, зависит от объема выборки n и доверительной вероятности g. При увеличении объема выборки длина доверительного интервала уменьшается, а с приближением доверительной вероятности к единице (g®1) - увеличивается. Выбор доверительной вероятности определяется конкретными условиями. Обычно используются значения g, равные 0.90; 0.95; 0.99. иногда рассматривают односторонние доверительные интервалы, соответственно верхний (вида q<T2()) и нижний (вида T1()<q)), определяемые условиями, аналогичными (1), в которых опускают соответствующую вторую границу

P(q<T2())=g или P(T1()<q)=g.

 

Вопрос







Дата добавления: 2015-06-15; просмотров: 368. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия