Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Метод моментов. Теоремы о свойствах оценок, полученных методом моментов





 

Исторически первым методом точечного оценивания неизвестных параметров является метод моментов, предложенный К. Пирсоном в 1894 году.

Суть метода в следующем. Пусть =(X1,...,Xn) – выборка из распределения L (x)Î ; ={F(x; ); ÎQ}, где =(q1,...,qr) и QÍRr. Предположим, что у наблюдаемой случайной величины. x существуют первые r моментов ak=Mxk, k=1,...,r. Они являются функциями от неизвестных параметров : ak=ak(). Рассмотрим соответствующие выборочные моменты Ank().

 

Пусть ak=Ank() – значения этих величин для наблюдавшейся реализации выборки . Тогда метод моментов состоит в приравнивании значений ak и теоретических моментов:

ak()=ak, k=1,...,r (1)

Решая эти уравнения относительно q1,...,qr, получаем значения оценок параметров.

Замечания.

1). Число уравнений в системе (1) должно совпадать с числом неизвестных параметров.

2). В системе уравнений (1) могут одновременно присутствовать уравнения как для начальных, так и для центральных моментов.

Рассмотрим теоретическое обоснование этого метода:

Теорема 3.4. Известно, что выборочные моменты Ank() являются несмещёнными и состоятельными оценками теоретических моментов ak().

Доказательство: Проверим выполнение достаточного условия состоятельности:

, n®¥, т.е. условие состоятельности выполнено.

Теорема 3.5. Если существует взаимно однозначное и взаимно непрерывное соответствие между параметрами q1,...,qr и начальными моментами a1,...,ar, т.е. существуют непрерывные функции j1,...,jr такие, что qi=ji(a1,...,ar), i=1,...,r.Тогда решения уравнений (1) можно записать в виде ,, а оценки являются состоятельными оценками соответствующих параметров.

Доказательство: В силу теоремы Слуцкого оценки метода моментов будут сходиться по вероятности к оцениваемому параметру при n®¥, т.е. статистики являются состоятельными оценками qi,i=1,...,r.

Таким образом, метод моментов при определённых условиях приводит к состоятельным оценкам; при этом уравнения (1) во многих случаях просты и их решение (в отличие от метода МП) не связано с большими вычислительными трудностями.

Когда теоретические моменты нужного порядка отсутствуют (например, распределение Коши), метод моментов неприменим. Оценки метода моментов, вообще говоря, не эффективны. Их обычно используют в качестве первых приближений, на основании которых можно определять другими методами оценки с большей эффективностью..

 

 

Вопрос







Дата добавления: 2015-06-15; просмотров: 1307. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия