Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Нормальное распределение. Нормальный закон распределения (закон Гаусса) играет важную роль в теории вероятностей и занимает особое положение среди других законов





 

Нормальный закон распределения (закон Гаусса) играет важную роль в теории вероятностей и занимает особое положение среди других законов. Такой закон имеет место, когда на формирование случайной величины оказывает влияние множество разнообразных факторов. Например, координаты точки попадания снаряда, рост, вес человека имеют нормальный закон распределения.

Случайная величина Х называется нормальной, если ее плотность вероятности имеет вид:

X≈ N(a,s) Þ случайная величина распределена по нормальному закону с параметрами распределения (а,s).

Вычислим для нормальной случайной величины Х вероятность попадания на участок (a,b)

P{a<X<b}= . (*)

Сделав, в интеграле (*) замену переменной t= , и изменяя пределы интегрирования, получим

P{a<X<b}= .

Как известно, неопределенный интеграл не выражается через элементарные функции, но его можно выразить через специальную функцию:

,

называемую функцией Лапласа или интегралом вероятностей, для которой составлены таблицы. С помощью этой функции вероятность попадания нормальной случайной величины на участок (a,b) выражается простой формулой

P{a<X<b}=Ф . (1)

Функция Лапласа Ф(х) обладает следующими свойствами:

Ф(0)=0

Действительно, =0.

Ф(-х)=-Ф(х) - нечетная функция.

Доказательство: ,

делаем замену -t=z, получаем

, т.е. Ф(-х)=-Ф(х).

Ф(+¥)=0.5; Ф(-¥)=-0.5.

Это свойство следует из того что, используя соответствующую запись можно придти к интегралу Эйлера-Пуассона, и получаем следующее

.

Интеграл Эйлера-Пуассона:

Через функцию Лапласа просто выражается вероятность попадания нормальной случайной величины Х на участок длиной 2L.

P{a-L<X<a+L}=P{ <L}=Ф ,

принимая во внимание нечетность функции Лапласа, получаем

P{ <L}=2Ф .

Через функцию Лапласа выражается и функция распределения F(x) нормальной случайной величины Х. По формуле (1), полагая a=-¥, b=х, и учитывая, что Ф(-¥)=-1/2, получим:

F(x)= .

При изменении параметров распределения будет изменяться кривая распределения. При изменении а f(x) не изменяет своей формы, просто смещается вдоль оси абсцисс. Изменение s равносильно изменению масштаба кривой по обеим осям

 

 

Вопрос







Дата добавления: 2015-06-15; просмотров: 416. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Studopedia.info - Студопедия - 2014-2025 год . (0.182 сек.) русская версия | украинская версия