Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Выбор из двух простых гипотез. Критерий Неймана-Пирсона





 

Проверяется простая параметрическая гипотеза против простой альтернативы. Параметрическое множество состоит из двух точек Q={q0;q1}. Основная (проверяемая) гипотеза утверждает Н0: θ=θ0, а альтернатива Н1: θ=θ1 . Необходимо построить правило, позволяющее на основе значений выборки принять или отвергнуть Н0.

Решение задачи. Запишем вероятности ошибок

P(g1|H0)=P(g1|q0)= L (;q0)d

L (x;q) - функция правдоподобия.

P(g0|H1)=P(g0|q1)= L (;q1)d =1- L (;q0)d

Зафиксируем значение вероятности ошибки первого рода P(g1|H0)=a. Будем искать критерий обеспечивающий (min) минимум вероятности ошибки 2-го рода. Он будет при условии

,

– отношение правдоподобия.

Учитывая, что l() и L (;q) – положительные, то максимум интеграла будет достигаться, если ={ : l()³c}.

Значение с выбирается из равенства:

Покажем, что такое разбиение приводит к наиболее мощному критерию.

Теорема Неймана - Пирсона. Пусть функции F0(x)=F(x;q0) и F1(x)=F(x;q1) – возможные распределения случайной величины x. Пусть они непрерывны по х. Отношение правдоподобия задаётся таким образом. Тогда при заданной вероятности ошибки 1-го рода существует наиболее мощные критерий , определяющий критическую область следующим образом ={ : l()³c}.

Доказательство: Рассмотрим любой другой критерий уровня значимости a. Тогда

Функция мощности для критерия выражается аналогично

Из второго равенства находим:

,

подставляем в первое равенство и получаем

+ - =

умножим и разделим на L (x;q0) и получим

= + -

В соответствии с условиями теоремы:

={ : l()³c}; ={ : l()<c}

получаем

< +c( - ). (*)

Рассмотрим интегралы в скобках. Первый интеграл, как и второй, можно представить в виде:

= -

= -

По условиям теоремы уровень значимости равен a. Интегралы в выражении (*) в правой части совпадают и скобки равны 0, отсюда получаем < , т.е. более мощный критерий по сравнению с . В силу произвольности соотношение выполняется для всех критериев с уровнем значимости a, т.е. - наиболее мощный критерий.

Замечание

Критерий , построенный в соответствии с указанными условиями, называется критерием Неймана-Пирсона. Фиксируется вероятность ошибки 1-го рода и минимизируется вероятность ошибки 2-го рода.

 

Вопрос







Дата добавления: 2015-06-15; просмотров: 766. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия