Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Выбор из двух простых гипотез. Критерий Неймана-Пирсона





 

Проверяется простая параметрическая гипотеза против простой альтернативы. Параметрическое множество состоит из двух точек Q={q0;q1}. Основная (проверяемая) гипотеза утверждает Н0: θ=θ0, а альтернатива Н1: θ=θ1 . Необходимо построить правило, позволяющее на основе значений выборки принять или отвергнуть Н0.

Решение задачи. Запишем вероятности ошибок

P(g1|H0)=P(g1|q0)= L (;q0)d

L (x;q) - функция правдоподобия.

P(g0|H1)=P(g0|q1)= L (;q1)d =1- L (;q0)d

Зафиксируем значение вероятности ошибки первого рода P(g1|H0)=a. Будем искать критерий обеспечивающий (min) минимум вероятности ошибки 2-го рода. Он будет при условии

,

– отношение правдоподобия.

Учитывая, что l() и L (;q) – положительные, то максимум интеграла будет достигаться, если ={ : l()³c}.

Значение с выбирается из равенства:

Покажем, что такое разбиение приводит к наиболее мощному критерию.

Теорема Неймана - Пирсона. Пусть функции F0(x)=F(x;q0) и F1(x)=F(x;q1) – возможные распределения случайной величины x. Пусть они непрерывны по х. Отношение правдоподобия задаётся таким образом. Тогда при заданной вероятности ошибки 1-го рода существует наиболее мощные критерий , определяющий критическую область следующим образом ={ : l()³c}.

Доказательство: Рассмотрим любой другой критерий уровня значимости a. Тогда

Функция мощности для критерия выражается аналогично

Из второго равенства находим:

,

подставляем в первое равенство и получаем

+ - =

умножим и разделим на L (x;q0) и получим

= + -

В соответствии с условиями теоремы:

={ : l()³c}; ={ : l()<c}

получаем

< +c( - ). (*)

Рассмотрим интегралы в скобках. Первый интеграл, как и второй, можно представить в виде:

= -

= -

По условиям теоремы уровень значимости равен a. Интегралы в выражении (*) в правой части совпадают и скобки равны 0, отсюда получаем < , т.е. более мощный критерий по сравнению с . В силу произвольности соотношение выполняется для всех критериев с уровнем значимости a, т.е. - наиболее мощный критерий.

Замечание

Критерий , построенный в соответствии с указанными условиями, называется критерием Неймана-Пирсона. Фиксируется вероятность ошибки 1-го рода и минимизируется вероятность ошибки 2-го рода.

 

Вопрос







Дата добавления: 2015-06-15; просмотров: 766. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия