Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Проверка гипотезы о математическом ожидании нормального распределения





Пусть случайная величина x имеет нормальное распределение с известной дисперсией s2 и неизвестным средним q ~ N(q,s2), qÎ{q0,q1}, q0<q1. Необходимо построить критерий, позволяющий на основе значений выборки решить, какое значение имеет параметр q.

Н0: q=q0; Н1: q=q1.

Будем использовать критерий Неймана-Пирсона. Необходимо построить отношение и сравнить с некоторым порогом с~const.

l()³c - принимается решение g1~ H1:q=q1,

l()<c - принимается решение g0~ H0:q=q0.

Значение с находится из условия: P(g1|H0)=a

В виду монотонности экспоненты можно перейти к следующему неравенству

ln l(x) ≥ ln c, т.е.

[ ] ≥lnc.

В качестве статистики критерия при проверке простой параметрической гипотезы выбирают ту же статистику, что и для оценки параметра q, т.е. выборочное среднее. Поэтому из этого неравенства определим выборочное среднее , после преобразований получим:

³ (*)

Обозначим через h правую часть равенства (*), и получаем следующий алгоритм

. (7.1)

Необходимо найти h из условия P(g1|H0)=a. Выборочное среднее имеет нормальный закон распределения с параметрами N(θ, σ/√n).

Определим ошибки первого и второго рода

a=P(g1|H0)=P( >h|q0)= (7.2)

b= P(g0|H1)=P( £h|q1)= . (7.3)

Обозначим ug то значение, для которого 1-Ф(ug)=g,

ug носит название квантиль нормального распределения.

Тогда из (7.2), (7.3) и из того, что ug=-u1-g вытекает

(7.4)

,

отсюда определим h, т.е.

h=q0+ua =q1-ub

Из этого выражения найдём n

(7.5)

Равенство (7.5) даёт тот объём выборки, который при оптимальном критерии обеспечивает ошибки 1-го и 2-го рода (a и b). Если правая часть (7.5) - не целая, то за n надо брать ближайшее большее целое число

В соответствии с выражением (7.4) пороговое значение находится правее θ0. Справа от h находится критическая область, слева – допустимая.

Функция мощности (это вероятность попадания выборки в критическую область) выражается через ошибки 1-го и 2-го рода следующим образом:

= ,

= .

Значение h называется критическим значением критерия. Слева от него находится допустимая область, справа – критическая область. На практике обычно считают известным уровень значимости α и объем выборки n, а h - критическое значение определяют из таблиц или с помощью пакетов MATHCAD и STATISTICA.

Уровень значимости α связан с критическим значением h приближенной формулой

α ≈ 1 - A(h),

где A(h) – функция распределения той статистики, которая используется при проверке гипотез. При большом объёме выборки критическое значение h совпадает с (1 – α) квантилью соответствующего распределения.

 

Вопрос







Дата добавления: 2015-06-15; просмотров: 384. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия