Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Критерий согласия Колмогорова. Этот критерий применяют в тех случаях, когда функция F(x) непрерывна





 

Этот критерий применяют в тех случаях, когда функция F(x) непрерывна. Статистикой критерия является величина:

. (8.3)

Она представляет собой максимальное отклонение эмпирической функции распределения Fn(x) от гипотетической функции распределения F(x). Это является следствием следующей теоремы.

Теорема.8.1. Относительная частота произвольного события в n независимых испытаниях является оптимальной оценкой для вероятности этого события.

С увеличением объема выборки n происходит сближение Fn(x) с F(x). Поэтому при больших n (n®¥), когда гипотеза H0 истинна, значение Dn не должно существенно отклоняться от нуля.

Особенностью статистики Dn является то, что ее распределение при гипотезе H0 не зависит от вида функции F(x).

Теорема.8.2. Если F(x) - непрерывная функция, то при справедливости гипотезы H0 закон распределения статистики Dn не зависит от вида функции распределения F(x).

Доказательство. Действительно, полагая в формуле (8.3) x=F-1(u), 0£u£1, где F-1(u) - функция, обратная к F(x), получаем:

.

Перейдем к новым случайным величинам, используя формулу Ui=F(Xi), i=1,...,n; пусть U(1)£...£U(n) - их вариационный ряд. Функция F(x) монотонна, поэтому U(k)=F(X(k)), k=1,...,n и неравенства F-1(u)³ X(k) эквивалентны неравенствам u³U(k). Используя представление эмпирической функции распределения:

имеем:

.

Независимо от вида функции F(x) L (Ui)=R(0,1) и Фn(u) - эмпирическая функция распределения для выборки из равномерного распределения. ▓

Эта теорема позволяет вычислить и протабулировать распределение Dn только один раз (для выборки из равномерного R(0,1) распределения), и использовать ее для проверки гипотезы относительно произвольной непрерывной функции распределения F(x). Функция распределения статистики Dn табулирована при конечных значениях n. При n®¥ статистика Dn имеет закон распределения Колмогорова

.

Правило проверки гипотезы на основе критерия Колмогорова: подсчитывается значение статистики Dn~dэкс

dэкс³kкр®g1, dэкс<kкр®g0

kкр находится из условия

=1-K(kкр)=a или

1– =a. Отсюда

kкр=K1-a.

K1-a - квантиль распределения Колмогорова порядка 1-a.

Замечания.

1. В отличие от критерия c2, критерий Колмогорова требует точного задания функции F(x).

2. Критерий согласия Колмогорова теоретически обоснован для непрерывных случайных величин.

3. В отличие от критерия c2 Пирсона, критерий Колмогорова можно использовать и при n<50 (даже при n³20).

 

Вопрос

Проверка гипотез о равенстве распределений.







Дата добавления: 2015-06-15; просмотров: 360. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Тема 2: Анатомо-топографическое строение полостей зубов верхней и нижней челюстей. Полость зуба — это сложная система разветвлений, имеющая разнообразную конфигурацию...

Виды и жанры театрализованных представлений   Проживание бронируется и оплачивается слушателями самостоятельно...

Что происходит при встрече с близнецовым пламенем   Если встреча с родственной душой может произойти достаточно спокойно – то встреча с близнецовым пламенем всегда подобна вспышке...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия