Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Критерий согласия Колмогорова. Этот критерий применяют в тех случаях, когда функция F(x) непрерывна





 

Этот критерий применяют в тех случаях, когда функция F(x) непрерывна. Статистикой критерия является величина:

. (8.3)

Она представляет собой максимальное отклонение эмпирической функции распределения Fn(x) от гипотетической функции распределения F(x). Это является следствием следующей теоремы.

Теорема.8.1. Относительная частота произвольного события в n независимых испытаниях является оптимальной оценкой для вероятности этого события.

С увеличением объема выборки n происходит сближение Fn(x) с F(x). Поэтому при больших n (n®¥), когда гипотеза H0 истинна, значение Dn не должно существенно отклоняться от нуля.

Особенностью статистики Dn является то, что ее распределение при гипотезе H0 не зависит от вида функции F(x).

Теорема.8.2. Если F(x) - непрерывная функция, то при справедливости гипотезы H0 закон распределения статистики Dn не зависит от вида функции распределения F(x).

Доказательство. Действительно, полагая в формуле (8.3) x=F-1(u), 0£u£1, где F-1(u) - функция, обратная к F(x), получаем:

.

Перейдем к новым случайным величинам, используя формулу Ui=F(Xi), i=1,...,n; пусть U(1)£...£U(n) - их вариационный ряд. Функция F(x) монотонна, поэтому U(k)=F(X(k)), k=1,...,n и неравенства F-1(u)³ X(k) эквивалентны неравенствам u³U(k). Используя представление эмпирической функции распределения:

имеем:

.

Независимо от вида функции F(x) L (Ui)=R(0,1) и Фn(u) - эмпирическая функция распределения для выборки из равномерного распределения. ▓

Эта теорема позволяет вычислить и протабулировать распределение Dn только один раз (для выборки из равномерного R(0,1) распределения), и использовать ее для проверки гипотезы относительно произвольной непрерывной функции распределения F(x). Функция распределения статистики Dn табулирована при конечных значениях n. При n®¥ статистика Dn имеет закон распределения Колмогорова

.

Правило проверки гипотезы на основе критерия Колмогорова: подсчитывается значение статистики Dn~dэкс

dэкс³kкр®g1, dэкс<kкр®g0

kкр находится из условия

=1-K(kкр)=a или

1– =a. Отсюда

kкр=K1-a.

K1-a - квантиль распределения Колмогорова порядка 1-a.

Замечания.

1. В отличие от критерия c2, критерий Колмогорова требует точного задания функции F(x).

2. Критерий согласия Колмогорова теоретически обоснован для непрерывных случайных величин.

3. В отличие от критерия c2 Пирсона, критерий Колмогорова можно использовать и при n<50 (даже при n³20).

 

Вопрос

Проверка гипотез о равенстве распределений.







Дата добавления: 2015-06-15; просмотров: 360. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия