Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Проверка гипотезы о дисперсии нормального распределения





 

Пусть в модели x~N(a,s2) следует проверить простую гипотезу о неизвестной дисперсии, т.е. рассматриваются две гипотезы Н0: q=q0;

Н1: q=q1>q0. Необходимо построить критерии Неймана - Пирсона для принятия решения.

В этом случае отношение правдоподобия

l(x)=

при условии, что а=0 приводит к статистике

Известно, что сумма квадратов случайных величин будет иметь c2-распределение с n степенями свободы, поэтому для решения задачи будем испытывать статистику

T= , TÎ(0,¥)

и T=q .

Алгоритм проверки гипотезы T³c®g1 T<c®g0

Найдём значение c из условия.

Ошибка первого рода:

P(g1|H0)=P(T³c|q0)=P(q0 ³c)=P( ³ )=1- =a, отсюда:

с= ×q0

Здесь – функция распределения c2 с n степенями свободы; – квантиль c2-распределения порядка (1-a).

Ошибка второго рода:

P(g0|H1)=P(T<c|q1)=P(q1 <c)=P( < )=b,

b= .

Замечание.

Статистика Т= предполагает, что математическое ожидание известно, поэтому Т=q . Если математическое ожидание неизвестно, то можно использовать статистику Т= . Для неё справедливо представление Т=q .

 

Вопрос

Проверка сложных статистических гипотез.

Гипотеза о равенстве математических ожиданий нормальных распределений

 

Пусть имеются две выборки из нормальных распределений

=(X1,...,Xn), x ~ N(q1,s1)

=(Y1,...,Yn), h ~ N(q2,s2)

Н0: θ12 Н1: θ1¹θ2 - сложные гипотезы.

Необходимо построить правила, позволяющие на основе значений выборок и , принять или отвергнуть основную гипотезу.

Будем пользоваться статистикой

T= , ,

~N – выборочное среднее имеет нормальное распределение;

~N - аналогично.

- ~ N ;

T= ~N , .

При этом основная гипотеза и альтернатива могут быть сформулированы следующим образом: Н0: θ0=0 - простая гипотеза; Н1: θ0¹0 - сложная гипотеза.

Решение этой задачи иллюстрируется рисунками, приведенными ниже.

 

 

В связи с этим мы должны рассмотреть три случая

q1>q2, q0>0

q1<q2, q0<0

q1¹q2, q0>0, q0<0 (q0<>0)

В каждом случае критическая область выбирается по-своему.

a) q0>0 (q1>q2) критическая область правосторонняя. Алгоритм принятия решения в этом случае, как и в задаче проверки гипотезы о математическом ожидании нормального распределения, имеет вид

t³h®g0 t<h®g1

h находят из условия

P(g1|H0)=a (*)

при Н0, Т~N(0,1), поэтому

,

отсюда h=u1-a.

 

Найдём вероятность ошибки 2-го рода

P(g0|H1)=P(T<h|H1)=Ф(h-q0)=b, при H1 T~N(q0;1).

Вероятность ошибки зависит от разности параметров.

Если ®0, то P(g0|H1)=1- P(g1|H0)~b=1-a.

Если параметры расходятся, т.е. q0®¥, то P(g0|H1)®0 (b®0 - ошибка второго рода). Функция мощности при альтернативе будет иметь вид

W(q0)=1-P(g0|H1)=1-Ф(h-q0).

Исследуем поведение функции мощности при альтернативе для различных значений θ0.

При q0®¥ W(0)®1

b) q0<0 (q1<q2). Алгоритм принятия решения запишется в виде

t<h®g1 t³h®g0.

Найдём h из следующего выражения

P(g1|H0)=P(T<h|H0)=Ф(h)=a

h=ua.

Найдём вероятность ошибки 2-го рода

P(g0|H1)=P(T³h|H1)=1-P(T<h|H1)=1-Ф(h-q0).

Функция мощности имеет вид W(q0)=1- P(g0|H1)=Ф(h-q0).

c) q0 = 0. Алгоритм принятия решения запишется в виде

|t|³h®g1 |t|<h®g0

 

 

P(g1|H0)=P(|T|³h|H0)=1-P(|T|<h|H0)=1-Ф(h)+Ф(-h)=2-2Ф(h)=a.

Используя свойство Ф(-h)=1-Ф(h).

h= .

Вероятность ошибки 2-го рода определяется следующим образом:

P(g0|H1)=P(|T|<h|H1)=Ф(h-q0)+Ф(-h-q0)=Ф(h-q0)+Ф(h+q0)-1.

W(q0)=1-P(g0|H1)=2-Ф(h-q0)-Ф(h+q0).

График функции мощности представлен на рисунке, как и ранее W(0)=P(g1|H0)=a, при q0®±¥ функция мощности стремится к 1 (W(q0)®1).

 

Из рассмотрения функций мощности для односторонних и двустороннего критерия можно сделать вывод, что двусторонний критерий всегда менее мощный, чем один из односторонних критериев или .

 

Вопрос







Дата добавления: 2015-06-15; просмотров: 433. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...

Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия