ВВОДНАЯ К ЛАБОРАТОРНОЙ РАБОТЕ №1
Рассмотрим возможности Mathcad для решения дифференциальных уравнений.
Запишем пример.
Это диф. ур-е описывает некоторую неизвестную функцию. здесь производная некой неизвестной функции по переменной . Проинтегрируем его, чтобы найти :
Решение этого диф. ур-я нам даёт некое семейство функций. Чтобы найти конкретную функцию, нужно задать начальное условие :
Нужно найти константу .
Подставляем в решение вместо :
Подставляем конкретное найденное в решение диф. ур-я и получаем искомую функцию:
Построим график получившейся функции:
Так обстоит дело с решением простого дифференциального уравнения.
В Mathcad мы будем искать численное решение диф. ур-й, результатом будет таблица значений аргумента и функции, по которой в Mathcad можно легко построить график.
Запишем наш пример на синтаксисе системы Mathcad.
Зададим начальное условие:
Решаемое диф. уравнение (первого порядка) должно быть разрешено относительно производной. Левая часть диф. уравнения не задаётся, по умолчанию в левой части у нас всегда находится первая производная. Всё различие между диф. уравнениями будет заключаться в правой части. Задаётся правая часть диф. уравнения:
– в параметрах функции сначала указываем имя независимой переменной (), а потом – имя искомой функции ().
После задания правой части и начального условия мы вызываем собственно систему численного решения дифференциальных уравнений. Наиболее эффективным численным методом решения диф. ур-я является метод Рунге-Кутта. Рунге и Кутт – два немецких математика, разработавшие данный метод в конце XIX века. Существовало целое поколение программистов, которые программировали этот метод. Теперь этот метод встроен практически во все математические пакеты.
где – это начальное условие, которые мы задали заранее. В системе Mathcad начальное условие можно указывать прямо в скобках в качестве параметра функции (в явном виде). – это отрезок интегрирования. Мы выбрали отрезок от 0 до , т. к. наша функция периодическая, и её период равен . 30 – число разбиения отрезка интегрирования. Как мы знаем, для нахождения численного решения интеграла, мы разбиваем отрезок на несколько частей и на каждом участке аппроксимируем исходную функцию некой параболой (метод Симпсона), хордой или прямоугольником. Чем больше частей, тем ближе значение интеграла к аналитическому решению. Длина каждого отрезка в нашем случае равна , т. е. порядка 2. – это функция, составляющая правую часть нашего диф. ур-я. Без этого параметра Mathcad не будет знать, какое же диф. ур-е мы решаем. означает фиксированный шаг.
Чтобы получить ответ, достаточно ввести следующую строчку:
Результат мы получим в виде таблицы из 30 строк (по одному на каждый отрезок разбиения) и двух столбцов, где первый столбец – это значение , а правый – значение .
В этой таблице столбик со значениями имеет наименование , а столбик со значениями имеет наименование . Поэтому чтобы построить график найденной функции , нам нужно вызвать декартову плоскость, а затем обозначить левую ось , а нижнюю ось – . Для того чтобы создать треугольные скобочки в степени, нужно набрать , а затем щёлкнуть комбинацию клавиш .
|