Вопрос 1. Связь момента импульса твёрдоготела с угловой скоростью еговращения
Связь момента импульса твёрдоготела с угловой скоростью еговращения. Тензор инерции. Главные и центральные оси инерции. Оси свободного вращения.
Момент импульса. Тензор инерции. Момент импульса тела относительно неподвижной точки – важнейшее понятие в динамике вращательного движения твердого тела. Он определяется так же, как и для системы материальных точек: L=mri´vi+ mr2´v2=2mr2w, здесь учтено, что: r1 =r2 =r, а v1=v1=wr. Существенно, что в этом примере век тор L направлен так же, как и w. К сожалению, так бывает не всегда. В этом можно убедиться на примере, показанном на рис. 2.4. Получим выражение для L в случае твердого тела произвольной формы, закрепленного в некоторой точке О. Пусть ri – радиус-вектор элементарной массы Dmi твердого тела, а w –угловая скорость. Тогда: Векторы ri, w и L можно проектировать как на оси лабораторной системы XYZ, так и на оси системы xyz, жестко связанной с твердым телом (поскольку точка О неподвижна, начала обеих систем можно совместить). Преимущество системы xyz заключается в том, что в ней проекции r i являются постоянными величинами (в системе XYZ они зависят от времени), и выражения для компонент L оказываются проще. ываются центробежными моментами инерции. Если Jxy=Jyx, Jxz=Jzx, Jzy=Jyz, то тензор наз. симметричным. Если оси Ox, Oy, Oz совместить с главными осями инерции, то тензор инарциипримет дигональный вид. Величины Jxx=Jx, Jyy=Jy, Jxx=Jz в этом случае наз. главными моментами инрции тела, причём: Lx=Jxwx и т. д. Эти оси также называются главными осями тензора инерции. Они жестко связаны с телом. Направление главных осей тела часто можно определить, пользуюсь соображениями симметрии. Так, например, главные оси однородного прямоугольного параллелепипеда параллельны его рёбрам. К телам такого рода относится, например цилиндр. Оси свободного вращения. Вращательное движение – это такое, при котором две точки тела остаются всё время неподвижными. Прямая, проходящая через эти точки, называется осью вращения. Все точки твердого тела, лежащие на оси вращения, неподвижны. Другие точки твердого тела движутся по окружностям в плоскостях, перпендикулярных оси вращения. Центры этих окружностей лежат на оси вращения. Вращательное двизение твердого тела является плоским.
|