Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Параметрические и автоколеьания. Пример. Работа внешней силы





Работа за период: Aпер.=(F02bw2T)/((w20-w2)+4w2b2)

Из-за потери энергии на трение собственные колебания постепенно затухают. Если к осциллятору подводить энергию от источника внешней гармонической силы, -то он начнет колебаться с частотой этой силы, кото­рая вообще говоря, отличается от собственной частоты осциллятора.

Однако можно создать устройства, в которых осциллятор сам регулирует подвод энергии из внешнего источника таким образом, чтобы компенсировать потери энергии на трение. За период колебаний из внешнего источника энергия, приобретаемая осциллятором, равна энергии, затрачиваемой на пре­одоление сил трения. В результате осциллятор совершает незатухающие колебания. Такие самоподдерживающиеся колебания называются автококлебаниями. Е сли трение невелико, то за один период в систему поступает лишь небольшая доля полной энергии осциллятора. В этом случае автоколебания с очень большой точностью являются гармоническими и их частота очень близка к частоте собственных колебаний. Если же силы трения ве­лики, то за один период в систему подводится значительная часть полной энергии осциллятора и поэтому колеба­ния сильно отличаются от гармониче­ских, хотя и являются периодическими. Период этих колебаний не совпадает с периодом собственных колебаний осциллятора.

Автоколебания маятника. Рассмотрим колебания маятника, подвешенного на оси во вращающейся втулке (Матвеев рис. 156 305 стр), и превращение его энергии в различных случаях. Вращающаяся втулка в результате скольжения относительно оси совершает работу на преодоление сил трения. Источником энергии, превращенной во внутреннюю, является машина, приводящая во вращение втулку. В тот полупериод колебаний маятника, когда направления вращения оси маятника и втулки совпадают, силы трения совпадают по направлению с движением точек поверхности оси. Поэтому эти силы вызывают усиление колебаний маятника. С другой стороны, энергия, превратившаяся во внутреннюю, за вр­мя полупериода колебаний в сравнении со случаем покоящегося маятника уменьшаетс, я ввиду того, что относительное перемещение трущихся поверхностей (внешняя поверхность оси и внутренняя поверхность втулки) уменьшается. Поэтому лишь часть энергии от машины, вращающей втулку, превращается во внутреннюю, а другая часть идет на увеличение энергии колебаний маятника. В другой полупериод колебаний маятника, когда направления вращения его оси и оси втулки противоположны, силы трения действуют против направ­ления движения маятника. Поэтому они тормозят его движение и энергия колебаний маятника превращается во внутреннюю. Энергия от машины, вращающей втулку, в этом случае также полностью превращается во внутреннюю. Полный результат превращений энергии в течение периода колебаний определяется характером зависимости сил трения от скорости. Если силы трения не зависят от скорости, то энергия, приобретаемая маятником в полупериоде колебаний, когда направления вращения его оси и вала совпадают, равна энергии, теряемой им на работу против сил трения в другом полупериоде. В этом случае вращение втулки не вносит каких-либо изменений в колебания маятника в сравнении со случаем невращающейся втулки. Если сила трения увеличивается с возрастанием скорости, то энергия, приобретаемая маятником за полупериод колебаний, когда направления враще­ния его оси и вала совпадают, меньше энергии, теряемой им на работу против сил трения в другом полупериоде, по­скольку во втором полупериоде относи­тельные скорости больше, а следова­тельно, и силы трения больше, чем в первом полупериоде. В этом случае вращение втулки увеличивает затуха­ние колебаний маятника.

Параметрическое возбуждение колебаний. Свойства колеблющихся систем описываются величинами, называемыми параметрами. Например, математи­ческий маятник характеризуется одним параметром — его длиной. При измене­нии этого параметра изменяются коле­бательные свойства маятника, а именно частота собственных колебаний. Если этот параметр изменять в определенном такте с колебаниями, то можно сооб­щить маятнику энергию и тем самым увеличить амплитуду его колебаний либо просто поддерживать колебания в незатухающем режиме. Такое возбуждение и поддержание колебаний назы­вается параметрическим.


Хорошо известным примером пара­метрического возбуждения и поддержи­вания колебаний является качание на качелях. Когда качели находятся в верхней точке, качающийся на них при­седает, а когда качели проходят нижнюю точку, он снова выпрямляется. В результате приседания в верхних точ­ках совершается меньшая по модулю работа, чем работа при подъеме в нижней точке. Разность работ, по зако­ну сохранения, равна разности энергий качаний, и качели раскачиваются. Если эта энергия затрачивается полностью на работу силы трения, то качания поддерживаются в незатухающем режиме.

 







Дата добавления: 2015-04-16; просмотров: 521. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Studopedia.info - Студопедия - 2014-2025 год . (0.007 сек.) русская версия | украинская версия