Задача о колебаниях пружинного маятника
Тело массой м совершает вдоль прямой горизонтальные колебания под действиемпружины. Исследуйте характер движения этого тела, пренебрегая массой пружины, трением и сопротивлением среды. Решение: Ось х направим вдоль прямой колебаний, а начало координат помести в точке равновесия. Тогда положение тела, моделируемого материальной точкой, определяется его абсцисой х, которая зависит от времени. т.е. является функцией t:x=(t). Нужно найти эту функцию и по ней исследовать характер колебаний. По закону Гука сила натяжения пружины пропорциональна ее удлинению. В нашем случае проекция силы на ось х равна F=-kx, где коэффициент пропорциональности k>0, а знак минус поставлен потому, что сила упругости пружины направлена от тела к началу координат (к положению равновесия). По второму закону Ньютона имеем дифференциальное уравнение: m²(t)= -kx или x²(t)=-w2x, (1) где w2= Приведем решение уравнения (1), основанное на физических представлениях. Для этого проведем окружность радиуса r с центром в начале координат (рисунок) и рассмотрим равномерное движение точки М по этой окружности с угловой скоростью w>0, квадрат которой равен Рисунок – равномерное движение точки М по окружности Так как центростремительное ускорение направлено по радиусу окружности к ее центру, последнее равенство в векторной форме примет вид
решение, которого может быть истолковано как зависящая от времени абсцисса точки М при ее равномерном движении по окружности против хода часовой стрелки. Найдем эту зависимость. Пусть при t=t0 точка М совпадает с М1 (рисунок), тогда в момент времени t радиус Ом будет составлять угол х=r cos ( Итак, модели 1 и 2 равносильны. Но первая описывается дифференциальным уравнением, а вторая – конечным. Отметим, что колебания материальной точки на пружине, движение проекции точки М на диаметр при равномерном ее движении по окружности, малые колебания математического маятника, колебания тока в электрической цепи и многие колебательные процессы другой природы с соответственно подобранными параметрами и начальными условиями будут иметь одну и ту же математическую модель. «Поэтому, изучив математическую модель, мы можем часто делать выводы о свойствах разнообразных объектов. Кроме того, если различные объекты имеет одинаковую математическую модель, то становиться возможным моделировать один из этих объектов другим. Например, вместо исследования колебаний сложной линейной механической системы можно производить измерения в соответственно подобранной электрической цепи, имеющей ту же математическую модель. На этом основано действие электромеханических, оптико-механических и других аналоговых устройств. Замечательно, что при применении таких устройств сама математическая модель как бы остается в стороне (значение интересующих нас механических величин непосредственно получаются по результатам электрических измерений), хотя именно на единстве модели основана возможность этого применения»
|