Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Задача о колебаниях пружинного маятника





Тело массой м совершает вдоль прямой горизонтальные колебания под действиемпружины. Исследуйте характер движения этого тела, пренебрегая массой пружины, трением и сопротивлением среды.

Решение: Ось х направим вдоль прямой колебаний, а начало координат помести в точке равновесия.

Тогда положение тела, моделируемого материальной точкой, определяется его абсцисой х, которая зависит от времени. т.е. является функцией t:x=(t). Нужно найти эту функцию и по ней исследовать характер колебаний.

По закону Гука сила натяжения пружины пропорциональна ее удлинению. В нашем случае проекция силы на ось х равна F=-kx, где коэффициент пропорциональности k>0, а знак минус поставлен потому, что сила упругости пружины направлена от тела к началу координат (к положению равновесия). По второму закону Ньютона имеем дифференциальное уравнение:

m²(t)= -kx или

x²(t)=-w2x, (1)

где w2= . Теперь интересующие нас выводы будем получать из решения этого уравнения, а не из непосредственного, например, экспериментального исследования самого физического процесса. Именно это уравнение математически выражает общие законы (Ньютона и Гука) и условия рассматриваемого колебательного процесса и потому называется его математической моделью.

Приведем решение уравнения (1), основанное на физических представлениях. Для этого проведем окружность радиуса r с центром в начале координат (рисунок) и рассмотрим равномерное движение точки М по этой окружности с угловой скоростью w>0, квадрат которой равен , тогда модуль центростремительного ускорения этой точки будет a = или, с учетом того, что получим

Рисунок – равномерное движение точки М по окружности

Так как центростремительное ускорение направлено по радиусу окружности к ее центру, последнее равенство в векторной форме примет вид

– вектор, направленный от центра и, имеющий длину r. Учитывая, что проекция ускорения на ось х есть вторая производная от абсциссы времени, получим дифференциальное уравнение второго порядка

решение, которого может быть истолковано как зависящая от времени абсцисса точки М при ее равномерном движении по окружности против хода часовой стрелки. Найдем эту зависимость.

Пусть при t=t0 точка М совпадает с М1 (рисунок), тогда в момент времени t радиус Ом будет составлять угол с ОМ1 и угол ( с осью х, поэтому абсцисса точки М как функция будет равна:

х=r cos ( ) (2)

Итак, модели 1 и 2 равносильны. Но первая описывается дифференциальным уравнением, а вторая – конечным. Отметим, что колебания материальной точки на пружине, движение проекции точки М на диаметр при равномерном ее движении по окружности, малые колебания математического маятника, колебания тока в электрической цепи и многие колебательные процессы другой природы с соответственно подобранными параметрами и начальными условиями будут иметь одну и ту же математическую модель.

«Поэтому, изучив математическую модель, мы можем часто делать выводы о свойствах разнообразных объектов. Кроме того, если различные объекты имеет одинаковую математическую модель, то становиться возможным моделировать один из этих объектов другим. Например, вместо исследования колебаний сложной линейной механической системы можно производить измерения в соответственно подобранной электрической цепи, имеющей ту же математическую модель. На этом основано действие электромеханических, оптико-механических и других аналоговых устройств. Замечательно, что при применении таких устройств сама математическая модель как бы остается в стороне (значение интересующих нас механических величин непосредственно получаются по результатам электрических измерений), хотя именно на единстве модели основана возможность этого применения»


 







Дата добавления: 2015-04-16; просмотров: 582. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Виды сухожильных швов После выделения культи сухожилия и эвакуации гематомы приступают к восстановлению целостности сухожилия...

КОНСТРУКЦИЯ КОЛЕСНОЙ ПАРЫ ВАГОНА Тип колёсной пары определяется типом оси и диаметром колес. Согласно ГОСТ 4835-2006* устанавливаются типы колесных пар для грузовых вагонов с осями РУ1Ш и РВ2Ш и колесами диаметром по кругу катания 957 мм. Номинальный диаметр колеса – 950 мм...

Философские школы эпохи эллинизма (неоплатонизм, эпикуреизм, стоицизм, скептицизм). Эпоха эллинизма со времени походов Александра Македонского, в результате которых была образована гигантская империя от Индии на востоке до Греции и Македонии на западе...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия