Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

КАНОНИЧЕСКАЯ ЗАДАЧА ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ КАК МАТЕМАТИЧЕСКАЯ МОДЕЛЬ





Название «математическое программирование» связано с тем, что целью решения задач, рассматриваемых в этой дисциплине, является математически обоснованный выбор программы действий (не путать с программированием – составлением программы для ЭВМ).

В математическое программирование обычно включаются задачи на максимум и минимум с ограничениями типа равенств или неравенств.

К линейному программированию относятся те задачи математического программирования, в которых и целевая функция, и ограничения линейны.

Из линейного программирования рассмотрим задачу об использовании ресурсов.

Предприятие может осуществлять производство трех видов товара , , из двух видов сырья и . Нормы расхода на производство товаров вместе с данными о ценах и запасах представлены в таблице 1, где – количество сырья , которое расходуется на производство единицы товара , – стоимость единицы товара . Требуется построить математическую модель для определения плана выпуска товаров , , в количествах , , , при которых выручка от их реализации (продажи) была бы максимальной.

Математическая модель:

Найти значения , , , которые доставляют , где ,

при условиях .

Этой системе неравенств должна удовлетворять совокупность всех вариантов производства, обеспеченных имеющимися ресурсами. (Задача линейного программирования, в которой ограничения на запасы записаны в виде неравенств).

Таблица 1

Виды товаров Виды сырья         Запасы
Цена единицы товара  

Теперь построим математическую модель транспортной задачи:

стоимость перевозки 1 т груза из пункта отправления в каждый пункт назначения задана таблицей 2.

Таблица 2

Пункты назначения Пункты отправления Запасы
Потребность в грузе  

Здесь – стоимость перевозки 1 т груза из пункта отправления в пункт назначения . Весь груз из пунктов отправления нужно перевезти в пункты назначения, поэтому .

Составить математическую модель для определения оптимального плана перевозки грузов так, чтобы общая стоимость транспортных расходов была бы наименьшей.

Обозначим через – количество груза, предназначенного к отправлению из в , тогда придем к следующей математической модели:

Найти значения , которые доставляют , где ,

при условиях:

(Каноническая задача линейного программирования, в которой ограничения на запасы и потребности записаны в виде уравнений).


10) 1 – УСТОЙЧИВОСТЬ РЕШЕНИЙ

Устойчивость решения – очень важный практический вопрос.

Исходные данные – приближенны. При использовании ЭВМ возникают ошибки округления. Каким же образом погрешности влияют на результат?

Если малые изменения входных данных мало влияют на результат – решение устойчивое.

В противном случае таким решением пользоваться нельзя.

Пример:

X + 10*Y = 11

10X + 101*Y=111

X=1; Y=1;

 

Если же

X + 10*Y = 11,1

10X + 101*Y=111

X=11,1; Y=0;

Система плохо обусловлена, а решение неустойчивое.

Другой пример:

X + 2*Y = 39

-X + 3*Y=21

X=15; Y=12;

Если же

X + 2*Y = 39,1

-X + 3*Y=21

X=15,06; Y=12,02; - устойчивое решение.

В первом случае неустойчивость решения показывает нам необходимость технической доработки.

Устойчивые решения можно использовать на практике, неустойчивые решения показывают необходимость корректировки модели с помощью технических специалистов в проблеме.








Дата добавления: 2015-04-16; просмотров: 433. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Studopedia.info - Студопедия - 2014-2026 год . (0.01 сек.) русская версия | украинская версия