Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ ПОКАЗАТЕЛЬНОГО РОСТА КАК МАТЕМАТИЧЕСКАЯ МОДЕЛЬ





При решении прикладных задач часто в качестве математических моделей встречаются не только конечные, но и дифференциальные уравнения, т.е. такие, в которых неизвестной величиной является не число, а функция, содержащаяся под знаком производной или дифференциала.

Отметим, что нередко фундаментальные законы природы записываются в виде дифференциальных уравнений, например закон Ньютона mx’’(t)=F.

Задача о росте населения

Сначала рассмотрим из разных областей знания задачи, приводящие к решению дифференциальных уравнений.

Задача 1 Население страны возрастает на Р % в год. Найдите численность населения N=N(t) через t лет, если при t=0, N(0)=N0.

Построим математическую модель, в основание которой положено естественное предположение о том, что скорость роста населения в момент времени t пропорциональна его численности N(t). Но мгновенная скорость изменения величины, зависящей от t, определяется ее производной, тогда как функция N(t) не является даже непрерывной. Поэтому нам необходимо изменить действительную картину роста численности населения так, чтобы сделать возможным применение производной. Эта замена реального процесса на его математическую модель, с использованием производной основана на том, что малому приращению Dt соответствует малое приращение численности населения DN(t). Это позволяет нам говорить о скорости роста в данный момент времени и заменить N(t) близкой к ней дифференцируемой функцией или, еще проще, считать дифференцируемой N(t), значения которой в общем случае принадлежат множеству действительных чисел. Итак,

N`(t)=kN (t) или

N`(t)-kN (t)=0, (1)

Где k – коэффициент пропорциональности. Умножим обе части уравнения (1) на , получим N`(t) или (N(t) )`=0, откуда N (t) -постоянная. Из последнего уравнения имеем:N (t)= Так как N(0)=N0, то С=N0 и N(t)=N0 .

Для нахождения коэффициента k воспользуемся тем, что через год, т.е. при t=1 численность населения увеличилась на Р %, тогда получим , т.е. ek= , откуда k=ln , если значительно меньше 1.








Дата добавления: 2015-04-16; просмотров: 812. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия