Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Общая характеристика полиномиальной параметрической формы представления





 

Преимущества параметрической формы представления криволинейных объектов [24]:

- возможность локального контроля формы объекта;

- гладкость и непрерывность в математическом смысле;

- возможность аналитического вычисления производных;

- устойчивость к малым возмущениям.

Процесс формирования кривой желательно организовать так, чтобы каждый сегмент строился индивидуально, а не строить все сегменты единой глобальной вычислительной процедурой. Желательно свести процедуру к выбору небольшого ансамбля опорных точек, которые будут полностью характеризовать форму сегмента кривой. Через опорные контрольные точки сегмент проходит, а некоторые располагаются вблизи действительной кривой. В задачах компьютерной графики предпочтение отдается классу полиномиальных кривых, которые называются сплайнами. Название сплайны произошло от английского наименования деревянной рейки, с помощью которой в кораблестроении вычерчивались гладкие контуры.

 

5.6. Параметрическая непрерывность

 

На рисунке 5.2 показаны два последовательных сегмента составной параметрической кривой. Обозначим полином левого сегмента р(u), а полином правого - q(u). Сформулируем разные условия непрерывности, сопоставляя значения полиномов и их производных в точке сопряжения для u =1 для р(u) и u =0 для q(u). Если желательно, чтобы составная кривая была непрерывной необходимо в точке сопряжения обеспечить выполнение условия:

 

Рис. 5.2. Непрерывность составной кривой в точке сопряжения

 

В точке сопряжения значения всех трех параметрических компонентов векторов р и q должны быть равны. Кривые, в которых такие удовлетворяются, назовем кривыми, обладающими параметрической непрерывностью класса .

Переходя к анализу производных в точке сопряжения, можно сформулировать условие непрерывности по первой производной:

Кривые, в которых условия непрерывности удовлетворяются и для значения, и для первой производной, назовем кривыми, обладающими параметрической непрерывностью класса С 1.







Дата добавления: 2015-04-16; просмотров: 687. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия