Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Общая характеристика полиномиальной параметрической формы представления





 

Преимущества параметрической формы представления криволинейных объектов [24]:

- возможность локального контроля формы объекта;

- гладкость и непрерывность в математическом смысле;

- возможность аналитического вычисления производных;

- устойчивость к малым возмущениям.

Процесс формирования кривой желательно организовать так, чтобы каждый сегмент строился индивидуально, а не строить все сегменты единой глобальной вычислительной процедурой. Желательно свести процедуру к выбору небольшого ансамбля опорных точек, которые будут полностью характеризовать форму сегмента кривой. Через опорные контрольные точки сегмент проходит, а некоторые располагаются вблизи действительной кривой. В задачах компьютерной графики предпочтение отдается классу полиномиальных кривых, которые называются сплайнами. Название сплайны произошло от английского наименования деревянной рейки, с помощью которой в кораблестроении вычерчивались гладкие контуры.

 

5.6. Параметрическая непрерывность

 

На рисунке 5.2 показаны два последовательных сегмента составной параметрической кривой. Обозначим полином левого сегмента р(u), а полином правого - q(u). Сформулируем разные условия непрерывности, сопоставляя значения полиномов и их производных в точке сопряжения для u =1 для р(u) и u =0 для q(u). Если желательно, чтобы составная кривая была непрерывной необходимо в точке сопряжения обеспечить выполнение условия:

 

Рис. 5.2. Непрерывность составной кривой в точке сопряжения

 

В точке сопряжения значения всех трех параметрических компонентов векторов р и q должны быть равны. Кривые, в которых такие удовлетворяются, назовем кривыми, обладающими параметрической непрерывностью класса .

Переходя к анализу производных в точке сопряжения, можно сформулировать условие непрерывности по первой производной:

Кривые, в которых условия непрерывности удовлетворяются и для значения, и для первой производной, назовем кривыми, обладающими параметрической непрерывностью класса С 1.







Дата добавления: 2015-04-16; просмотров: 687. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия