Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Алгоритм Коэна-Сазерленда





 

Суть задачи отсечения двухмерных отрезков поясняется на рисунке 8.1. Проецирование уже выполнено и имеется двухмерное описание изображения в картинной плоскости. На этой же плоскости определена и рамка отсечения, которая соответствует видовому окну на экране дисплея. Все параметры заданы вещественными числами.

 

 

 

Рис. 8.1. Двумерное отсечение

 

Можно вычислить координаты точек пересечения прямой с рамкой видимости и использовать эту информацию для отсечения. Однако, необходимо минимизи­ровать объем вычислений и обойтись без опреде­ления точек пересечения, которое непременно включает операцию деления чисел с плавающей точкой. Исторически первым, отвечающим этим требованиям, был алгоритм Коэна-Сазерленда, в котором большинство операций умножения и деления заменены операциями сложения и вычитания действительных чисел и побитовыми логическими операциями булевой алгебры.

Выполнение алгоритма начинается с продления сторон рамки отсечения в обе стороны до бесконечности, в результате чего картинная плоскость делится на девять областей (рис.8.2).

 

Рис.8.2. Характеристические коды областей

 

Каждой области присваивается четырехразрядный двоичный номер - характеристический код(b0b1b2b3),который формируется следующим образом. Пусть (х,у)— координаты некоторой точки на картинной плоскости. Тогда

Аналогично, b1, приравнивается 1, если у < утin, а значения b2 и b3 определяются отношением между компонентой х и абсцисcами левой и правой границ рамки отсечения. В результате девяти областям присваиваются коды, представленные на рис.8.2.

При анализе отрезка первым делом определяется, в каких областях находятся его конечные точки, и им присваи­ваются соответствующие характеристические коды. Эта про­цедура требует выполнения восьми операций вычитания на каждый отрезок.

Рассмотрим отрезок, конечные точки которого имеют ха­рактеристические коды o1=outcode(x1,y1) и о2=outcode(x2, y2). Возможны четыре варианта сочетания характеристических кодов двух конечных точек (рис.8.1).

1. (о1 = o2 = 0). Обе конечные точки лежат внутри рамки отсечения — этот случай пред­ставлен отрезком АВ на рис.8.1. Весь отрезок при этом также находится внутри рамки отсечения и может быть передан дальше для выполнения растрового преобразования.

2. (o1≠0, o2 = 0 или наоборот). Одна точка находится внутри рамки отсечения, а вто­рая — вне ее (отрезок CD на рис. 8.1). В этом случае отрезок необходимо разделить.

3. (о1 & o2≠;0). По результату побитовой операции AND над характеристическими кодами крайних точек можно выяснить, лежат ли они по одну сторону от границы рамки или по разные. Если результат отличен от нуля, то конечные точки лежат по одну сторону от какой-либо границы, а значит, весь отрезок лежит вне рамки отсечения и его можно спокойно отбросить (отрезок EF на рис.8.1).

4. (o1 & о2 = 0). Обе конечные точки лежат вне рамки отсечения, но по разные стороны от двух ее границ. Этот вариант представлен отрезками GH и IJ на рис.8.1. Здесь нельзя с уверенностью сказать, пересекает отрезок зону видимости или нет. Требу­ется более тщательный анализ — нужно вычислить точку пересечения с одной из границ рамки и проанализировать характеристические коды крайних точек двух но­вых отрезков.

Для анализа характеристических кодов дос­таточно только булевых побитовых операций над двоичными числами, которые выполняются очень быстро. Вычисление точек пересечения выполняется чрезвычайно редко и только там, где без этой информации не обойтись, — во втором и четвертом вариантах сочетаний харак­теристических кодов.







Дата добавления: 2015-04-16; просмотров: 607. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия