Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Достаточные условия экстремума





Сначала мы изложим схему исследования функции на экстремум. Прежде всего, найдем стационарные точки , т. е. такие, что (или ). Затем, предполагая, что имеет частные производные до 2-го порядка включительно, непрерывные в стационарных точках, применим в этих точках формулу Тейлора
, где при .

(Поскольку - точка, близкая к 0, а производные 2-го порядка непрерывные и .) Таким образом, знак приращения совпадает со знаком 2-го дифференциала. Второй дифференциал есть квадратичная форма от . Если это – положительно определенная форма, то и в точке - минимум. Если отрицательно определенная, то - максимум. Если форма неопределенная (т.е. меняет знак), то экстремума нет. Для выяснения вопроса определенности формы можно использовать критерий Сильвестра из курса линейной алгебры.

Для этого следует рассмотреть определитель(гессиан)

,
где обозначают производные и его главные миноры, т.е. , ,
.

Если все эти миноры положительные, то - точка минимума.
Если знаки этих миноров чередуются, начиная со знака «-» - то - точка максимума.

В двумерном случае имеем геометрическую иллюстрацию. При данных условиях в окресности точки экстремума график функции имеет вид «почти» эллиптического параболоида:

В случае точки минимума

В случае точки максимума

Если же график «почти» гиперболического параболоида (седло), то экстремума нет.

 







Дата добавления: 2015-04-16; просмотров: 510. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия