Студопедия — Упражнения. I. Найти производную функции по направлению в заданной точке
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Упражнения. I. Найти производную функции по направлению в заданной точке






I. Найти производную функции по направлению в заданной точке .

1) , - биссектриса первого и третьего координатных углов, ;

2) , , , ;

3) , , ;

4) , , ;

5) , ; ;

6) , , , .

II. Найти вектор-градиент функции в заданной точке .

1) , ; 2) , ; 3) , .

III. В каком направлении производная по направлению функции в заданной точке имеет: а) наибольшее значение; б) наименьшее значение; в) равна 0.

1) , ; 2) , .

IV. Найти наибольшее значение производной по направлению функции в заданной точке .

1) , ; 2) , ;

3) , ; 4) , .

V. Показать, что функция , не дифференцируемая в точке , имеет в этой точке производную по любому направлению.

VI. Найти градиент функции в произвольной точке и убедиться, что он в этой точке перпендикулярен линии уровня.

VII. Найти угол между градиентами функции в точках и .

VIII. Найти производную функции в точке в направлении, перпендикулярном к линии уровня, проходящей через эту точку.

Тема 8. Функции одной и нескольких переменных, заданные неявно. Дифференцируемость векторных функций n переменных. Неявно заданные функции из IR.n в IRm

Будем говорить, что уравнение

(1)

задает неявно функцию на некотором промежутке , если при подстановке в уравнение (1) получаем тождество при всех .

Будем говорить, что уравнение

(2)

задает неявно функцию на некотором множестве R 2, если при подстановке в уравнение (2) получаем тождество при всех .

Теорема 1. Пусть выполнены условия:

1) функция и ее частные производные , непрерывны в некоторой окрестности точки ;

2) ;

3) .

Тогда уравнение (1) задает неявно в некоторой окрестности точки непрерывную функцию , удовлетворяющую условию , причем функция непрерывно дифференцируема в этой окрестности и

. (3)

Замечание 1. Производную неявно заданной уравнением (1) функции можно найти без использования формулы (3) следующим способом. При выполнении условий теоремы 1 в силу определения 1 выполняется тождество при всех . Дифференцируя его по , получим равенство

, (4)

из которого находим .

Замечание 2. Если выполняются условия теоремы 1 и функция имеет непрерывные частные производные второго порядка, то, дифференцируя соотношение (4) по , получим равенство

.

Отсюда находим вторую производную .

Замечание 3. Если , то при выполнении условий 1)-2) теоремы 1 уравнение (1) определяет неявно некоторую функцию . Если же обе частные производные и равны нулю, то точку называют особой точкой для геометрического образа уравнения (1).

Замечание 4. При выполнении условий теоремы 1 существуют касательная и нормаль к графику функции , заданной неявно уравнением (1), в точке , уравнения которых соответственно имеют вид

,

.

Теорема 2. Пусть выполнены условия:

1) функция и ее частные производные , , непрерывны в некоторой окрестности точки ;

2) ;

3) .

Тогда уравнение (2) задает неявно в некоторой окрестности точки непрерывную функцию , удовлетворяющую условию , причем функция непрерывно дифференцируема в этой окрестности и

, . (5)

Замечание 5. Для функции , заданной неявно уравнением (2), при выполнении условий теоремы 2 справедливы замечания, аналогичные замечаниям 1-3 к теореме 1, с соответствующими изменениями.

Замечание 6. При выполнении условий теоремы 2 существуют касательная плоскость и нормаль к графику функции , заданной неявно уравнением (2), в точке , уравнения которых соответственно имеют вид

, (6)
. (7)
     

Будем говорить, что система

(8)

задает неявно функции u = f (x; y), v = g (x, y) на некотором множестве D Ì R 2, если при подстановке u = f (x; y), v = g (x; y) в (7) при всех (x; y) Î D получаются тождества

(9)

Теорема 3. Пусть функции , определены и непрерывны вместе со своими частными производными в некоторой окрестности точки и выполняются условия:

1) координаты точки P 0 удовлетворяют системе (8);

2) якобиан

системы (8) в точке P 0 отличен от нуля, т.е. .

Тогда в некоторой окрестности точки M 0(x 0; y 0) система (8) определяет неявно функции u = f (x; y), v = g (x; y) такие, что , , причем

а) эти функции непрерывны в окрестности точки M 0;

б) они имеют в этой окрестности частные производные.

Частные производные функций f и g, например, по переменной x могут быть найдены путем дифференцирования тождеств системы (9) по этой переменной. В результате получаем систему

линейную относительно неизвестных и . Определителем этой системы является якобиан , который в точке P 0 отличен от нуля в силу условия 2) теоремы 3. Следовательно, система имеет единственное решение в окрестности этой точки. Решая ее, находим неизвестные частные производные и . Частные производные функций f и g по переменной y находят аналогично тому, как это делалось при нахождении частных производных и .

Пример 1. Определить задает ли уравнение неявно непрерывную функцию в окрестности точки при условии . Выяснить имеет ли эта функция производную в окрестности этой точки и если да, то вычислить её.

Решение. Обозначим через . Проверим выполнимость условий теоремы 1. Функция и ее частные производные , определены и непрерывны в окрестности точки (1; 0). Так как , а , то все условия теоремы 1 выполнены. Следовательно, данное уравнение задает в окрестности точки непрерывную и дифференцируемую функцию . Производная этой функции в окрестности точки , согласно формуле (3), определяется равенством

. (10)

В самой точке имеем .

Заметим, что для нахождения производной функции можно было воспользоваться способом, указанным в замечании 1. Продифференцируем уравнение , полагая . В результате получим соотношение

.

Выражая из него , получим равенство (10).

Пример 2. Найти частные производные и дифференциал неявно заданной уравнением функции в точке (1; 2; 1), если они существуют. Составить уравнения касательной плоскости и нормали к поверхности в этой точке.

Решение. Обозначим через . Частные производные этой функции

; ;

непрерывны в R 3, как многочлены. Так как точка (1; 2; 1) удовлетворяет условиям теоремы 2, то уравнение задает неявно в некоторой окрестности точки (1; 2) непрерывно дифференцируемую функцию , которая, согласно формулам (5), имеет в этой окрестности частные производные

; ,

причем , .

Функция дифференцируема в окрестности точки (1; 2)и ее дифференциал

.

Так как в точке (1; 2; 1) выполнены все условия теоремы 2, то в этой точке существуют касательная плоскость и нормаль к поверхности , причем, в силу формул (6), (7), эти уравнения соответственно имеют вид

и .

Пример 3. Найти в точке (1; 1; 2; -2) частные производные функций , , заданных неявно системой

. (11)

Решение. Координаты точки P0 удовлетворяют данной системе. Обозначим через , . Найдем значение якобиана этих функций в точке P 0.

; .

Так как все условия теоремы 3 выполняются, то в некоторой окрестности точки M 0(1; 1) система (11) определяет неявно функции u = f (x; y), v = g (x; y), которые имеют в этой окрестности частные производные.

Найдем частные производные по переменной x. Для этого продифференцируем систему (11) по x, считая u = u (x; y), v = v (x; y). В результате получим систему

из которой находим

; .

Тогда , . Поступая аналогично тому, как это было сделано выше, находим , .







Дата добавления: 2015-04-16; просмотров: 1069. Нарушение авторских прав; Мы поможем в написании вашей работы!



Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКОЙ ПОМОЩИ НАСЕЛЕНИЮ В УСЛОВИЯХ ОМС 001. Основными путями развития поликлинической помощи взрослому населению в новых экономических условиях являются все...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия