Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Тема 4. Частные производные. Дифференциал функций нескольких переменных. Геометрический смысл дифференциала ФНП. Условия дифференцируемости





Пусть - внутренняя точка области определения функции f (x; y) двух переменных . Предел отношения при , если он существует и конечен, называется частной производной по переменной x (по переменной y) функции f (x; y) в точке и обозначается , .

Если частные производные функции f существуют в каждой точке множества M Î R 2, то говорят, что функция f имеет частные производные на множестве M.

По аналогии с функциями двух переменных определяются и частные производные , ,..., функции n переменных (n > 2) в рассматриваемой точке , т.е.

.

Отсюда следует, что при вычислении частной производной по xk можно пользоваться правилами и формулами дифференцирования функции одной переменной, считая все переменные, кроме xk, фиксированными (постоянными).

Функция называется дифференцируемойв точке , если при любых допустимых приращениях и ее аргументов соответствующее полное приращение этой функции можно представить в виде

(1)

или в виде

. (2)

Здесь и не зависят от и , и при и , , при .

Функция называется дифференцируемой в области , если она дифференцируема в каждой точке этой области.

Если функция дифференцируема в точке , то линейная относительно и часть ее полного приращения (1) ((2)) называется полным дифференциалом (или, короче, дифференциалом) этой функции в точке и обозначается , т.е.

. (3)

Аналогичным образом вводятся понятия дифференцируемости и дифференциала для функций трех и более переменных.

Дифференциалы функций нескольких переменных обладают теми же свойствами, что и дифференциалы функций одной действительной переменной.

Пусть - фиксированная точка поверхности , а - произвольная точка этой поверхности.

Плоскость , проходящая через точку M 0 поверхности , называется касательной плоскостью к этой поверхности в точке M 0, если угол φ; между прямой и плоскостью стремится к нулю, когда точка M неограниченно приближается к точке M 0 по данной поверхности.

Теорема 1. Если функция дифференцируема в точке , то существует касательная плоскость к графику этой функции в точке , не параллельная оси , и уравнение этой плоскости имеет вид

. (4)

Геометрический смысл дифференциала. Дифференциал функции в точке есть приращение MM 1 аппликаты PM 1 касательной плоскости к поверхности в точке при переходе точки плоскости xOy в точку .

Нормалью к поверхности в точке называется прямая, перпендикулярная касательной плоскости в этой же точке.

Уравнения нормали имеют вид

. (5)

Необходимые условия дифференцируемости функции в точке.

Теорема 2. Если функция дифференцируема в точке , то она непрерывна в этой точке.

Теорема 3. Если функция дифференцируема в точке , т.е. имеет место равенство (1), то существуют обе частные производные функции в данной точке, причем и

. (6)

Достаточное условие дифференцируемости функции в точке.

Теорема 4. Если функция в некоторой окрестности точки имеет частные производные и и эти частные производные непрерывны в точке , то функция дифференцируема в точке , т.е. имеет место равенство (6).

Пример 1. Найти частные производные и полный дифференциал функции .

Решение. Данная функция в каждой точке области D = R 2 \ {(0; 0)} имеет частные производные

, ,

которые непрерывны там, как частное многочленов. Следовательно, по теореме 4 функция f дифференцируема в области D. Ее дифференциал в этой области находим по формуле

.

Таким образом,

Пример 2. Найти и , если . Является ли эта функция дифференцируемой в точке О (0; 0)?

Решение. Найдем частные производные функции по определению

;

.

Проверим частные производные функции на непрерывность в окрестности точки О (0; 0). Так как

и

при и , то частная производная не является непрерывной в точке (0; 0), а, следовательно, по теореме 4 функция не дифференцируема в этой точке.







Дата добавления: 2015-04-16; просмотров: 769. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

КОНСТРУКЦИЯ КОЛЕСНОЙ ПАРЫ ВАГОНА Тип колёсной пары определяется типом оси и диаметром колес. Согласно ГОСТ 4835-2006* устанавливаются типы колесных пар для грузовых вагонов с осями РУ1Ш и РВ2Ш и колесами диаметром по кругу катания 957 мм. Номинальный диаметр колеса – 950 мм...

Философские школы эпохи эллинизма (неоплатонизм, эпикуреизм, стоицизм, скептицизм). Эпоха эллинизма со времени походов Александра Македонского, в результате которых была образована гигантская империя от Индии на востоке до Греции и Македонии на западе...

Демографияда "Демографиялық жарылыс" дегеніміз не? Демография (грекше демос — халық) — халықтың құрылымын...

Ведение учета результатов боевой подготовки в роте и во взводе Содержание журнала учета боевой подготовки во взводе. Учет результатов боевой подготовки - есть отражение количественных и качественных показателей выполнения планов подготовки соединений...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия