Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Тема 7. Производная по направлению. Градиент





Пусть даны функция и точка R 2. Пусть, далее, – направленная прямая, расположенная в плоскости и проходящая через точку (см. рис. 1).

 

Рис. 1

Выберем на этой прямой одно из направлений , где - произвольная точка на прямой (для нее x = x0+Dx, y = y0+Dy). Обозначим через проекцию вектора на направление : , если направление вектора совпадает с направлением и , если направление вектора противоположно направлению .

Частной производной функции в точке по направлению l (это ось с выбранным направлением) называется предел отношения при , если этот предел существует и обозначается . Таким образом,

, .

Из данного определения следует, что если направление совпадает с положительным направлением оси (оси ), то

.

Аналогично вводится понятие производной функции в точке по данному направлению R n).

Теорема 1 (о связи производной по направлению с частными производными). Если функция дифференцируема в точке , то она имеет в этой точке производную по любому направлению , причем

, (1)

где и – величины углов, образованных направлением с положительными направлениями осей и .

Так как , то при выполнении условий теоремы 1 справедлива формула

. (1/)

Если функция двух переменных имеет в точке R 2 конечные частные производные, то вектор называется градиентом этой функции в точке и обозначается , где i, j – орты на осях координат Ox и Oy соответственно, т.е.

.

Производная по направлению функции f выражается через вектор градиент следующим образом

, (2)

где – величина угла между векторами и ( является единичным вектором на выбранном направлении). Таким образом, производная по направлению равна проекции градиента на это направление.

Из равенства (2) следует, что если направление совпадает с направлением вектора , то производная функции в точке в этом направлении будет наибольшей (при условии, что ). Наименьшее значение производная по направлению будет иметь, когда вектор градиент направлен в сторону, противоположную выбранному направлению.

Пример 1. Найти производную функции в точке в направлении .

Решение. Функция в окрестности точки имеет частные производные

, ,

которые непрерывны в самой точке . Следовательно, по достаточному условию дифференцируемости функция дифференцируема в точке и ее производную в этой точке по заданному направлению можно найти по формуле (1).

Угол - это угол между направлением и ортом , угол - это угол между направлением и ортом . По формуле косинуса угла между векторами находим

; .

Так как , , то по формуле (1) получаем

.

Пример 2. Найти наименьшее значение производной по направлению функции в точке .

Решение. Производная по направлению в некоторой точке принимает наименьшее значение, когда направление противоположно вектору градиенту функции в этой точке. В формуле (2) в этом случае , т.е.

.

Найдем частные производные функции в точке .

, ; , .

Тогда и наименьшее значение производной по направлению функции в точке есть .







Дата добавления: 2015-04-16; просмотров: 1559. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия