Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Тема 7. Производная по направлению. Градиент





Пусть даны функция и точка R 2. Пусть, далее, – направленная прямая, расположенная в плоскости и проходящая через точку (см. рис. 1).

 

Рис. 1

Выберем на этой прямой одно из направлений , где - произвольная точка на прямой (для нее x = x0+Dx, y = y0+Dy). Обозначим через проекцию вектора на направление : , если направление вектора совпадает с направлением и , если направление вектора противоположно направлению .

Частной производной функции в точке по направлению l (это ось с выбранным направлением) называется предел отношения при , если этот предел существует и обозначается . Таким образом,

, .

Из данного определения следует, что если направление совпадает с положительным направлением оси (оси ), то

.

Аналогично вводится понятие производной функции в точке по данному направлению R n).

Теорема 1 (о связи производной по направлению с частными производными). Если функция дифференцируема в точке , то она имеет в этой точке производную по любому направлению , причем

, (1)

где и – величины углов, образованных направлением с положительными направлениями осей и .

Так как , то при выполнении условий теоремы 1 справедлива формула

. (1/)

Если функция двух переменных имеет в точке R 2 конечные частные производные, то вектор называется градиентом этой функции в точке и обозначается , где i, j – орты на осях координат Ox и Oy соответственно, т.е.

.

Производная по направлению функции f выражается через вектор градиент следующим образом

, (2)

где – величина угла между векторами и ( является единичным вектором на выбранном направлении). Таким образом, производная по направлению равна проекции градиента на это направление.

Из равенства (2) следует, что если направление совпадает с направлением вектора , то производная функции в точке в этом направлении будет наибольшей (при условии, что ). Наименьшее значение производная по направлению будет иметь, когда вектор градиент направлен в сторону, противоположную выбранному направлению.

Пример 1. Найти производную функции в точке в направлении .

Решение. Функция в окрестности точки имеет частные производные

, ,

которые непрерывны в самой точке . Следовательно, по достаточному условию дифференцируемости функция дифференцируема в точке и ее производную в этой точке по заданному направлению можно найти по формуле (1).

Угол - это угол между направлением и ортом , угол - это угол между направлением и ортом . По формуле косинуса угла между векторами находим

; .

Так как , , то по формуле (1) получаем

.

Пример 2. Найти наименьшее значение производной по направлению функции в точке .

Решение. Производная по направлению в некоторой точке принимает наименьшее значение, когда направление противоположно вектору градиенту функции в этой точке. В формуле (2) в этом случае , т.е.

.

Найдем частные производные функции в точке .

, ; , .

Тогда и наименьшее значение производной по направлению функции в точке есть .







Дата добавления: 2015-04-16; просмотров: 1559. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия