Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Тема 3. Непрерывность. Равномерная непрерывность. Свойства непрерывных функций





Функция f (x; y) называется непрерывной в точке M 0 R 2, если:

1) функция f определена в этой точке;

2) точка M 0 является предельной точкой D (f);

3) в точке M 0 существует конечный предел функции f, равный значению функции в этой точке, т.е. .

На ε-δ; языке последнее условие можно записать так

или, что тоже самое,

.

Для функций нескольких переменных справедливы теоремы о непрерывности суммы, произведения и частного функций, о сохранении знака непрерывной функцией, о непрерывности сложной функции, аналогичные соответствующими теоремами для функций из R 1 в R 1.

Точка R 2, являющаяся предельной точкой области определения D (f) функции f (x; y), называется точкой разрыва этой функции, если выполняется хотя бы одно из следующих условий:

1) функция f не определена в точке ;

2) точка M 0 не является предельной точкой D (f);

3) предел функции f в точке не существует или существует, но не равен ее значению в этой точке.

Функция f нескольких переменных называется непрерывной на множестве MÌD (f), если она непрерывна в каждой точке этого множества.

Функция f (x; y), определенная в окрестности точки R 2, называется непрерывной в этой точке по переменной x (по переменной y), если существует конечный предел .

Очевидно, что непрерывная в точке по совокупности аргументов функция будет непрерывна в этой точке и по каждому аргументу в отдельности. Обратное, вообще говоря, неверно.

Функция называется равномерно непрерывной на множестве MÌD (f), если

Теорема Кантора. Функция , непрерывная на ограниченном замкнутом множестве, равномерно непрерывна на этом множестве.

Теорема 1 (аналог первой теоремы Вейерштрасса). Действительная функция , определенная и непрерывная на замкнутом и ограниченном множестве M, ограничена на этом множестве.

Теорема 2 (аналог второй теоремы Вейерштрасса).Действительная функция , определенная и непрерывная на замкнутом и ограниченном множестве M, принимает на нем свои наименьшее и наибольшее значения.

Теорема 3. Если функция f непрерывна в точке M 0(x 0, y 0), не являющейся изолированной точкой D (f), то существует такая окрестность точки M 0, во всех точках которой функция f принимает значения того же знака, что и в точке M 0.

Теорема 4. Если функция f непрерывна на связном множестве X и в точках M 1 Î X и M 2 Î X принимает неравные между собой значения f (M 1) ¹ f (M 2), то она принимает все промежуточные значения между f (M 1) и f (M 2).

Пример 1. Исследовать на непрерывность функцию

Решение. Имеем D (f) = R 2. В любой точке (x 0, y 0) ¹ (0, 0) данная функция непрерывна по теоремам о непрерывности частного и композиции функций. Подозрительной на разрыв является точка (0; 0). Найдем

.

Т.к. , то функция f (x, y) непрерывна в точке (0, 0).







Дата добавления: 2015-04-16; просмотров: 944. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия