Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ТЕОРИЯ МНОЖЕСТВ





 

«Каждый сам знает, что он

понимает под множеством»

Е.Борель

 

Основные понятия

 

Математика утверждает, что теория множества появилась на свет 7.12.1873 г. В этот день Г. Кантор (1845 – 1918 профессор математики и философии в Галле) написал письмо Дедекинду (1831 – 1918 немецкий математик), в котором утверждал, что ему удалось посредством множеств доказать, что действительных чисел больше, чем натуральных.

Множество основное математическое понятие. Его смысл выражается словами совокупность, набор и т. д. однотипных элементов, воспринимаемых как единое целое.

Множества обозначают большими латинскими буквами. Например, А = {Коля, Петя, Маша, Ира}, В = {1, 2, 7}, С = {1, 2, 3, 4, …, n, …}.

Все предметы, составляющие множества, называются элементами множества. Элементы множества обозначают маленькими латинскими буквами. Например, если элемент х принадлежит множеству К, то пишут х К, если элемент х не принадлежит множеству К, то пишут х К.

Есть множество, в котором нет ни одного элемента. Его называют пустым множеством и обозначают Ø.

Множество может быть конечным, если оно состоит из конечного числа элементов, и бесконечным, если оно содержит бесконечно много элементов. Примером конечного множества может служить множество дней недели, примером бесконечного множества – множество натуральных чисел.

Из школьного курса вам известны примеры бесконечных числовых множеств – множеств натуральных, целых, рациональных и действительных чисел.

Множество может быть задано:

· перечислением. Например, К = {2, 4, 20, 40};

· характеристическим свойством, т.е. свойством, характерным только для элементов этого множества. Например, .

Из элементов множества А = {Коля, Петя, Маша, Ира}, например, можно составить новое множество М = {Петя, Маша}. Оно характеризуется тем, что все элементы М принадлежат множеству А. Говорят, что Мподмножество множества А и пишут М А.

Множество М является подмножеством множества А, если всякий элемент множества М является элементом множества А и обозначают М А.

Например, множество всех первокурсников является подмножеством множества всех студентов.

Для любого множества А справедливо:

1) Само множество является своим подмножеством, т.е. А А.

2) Пустое множество является подмножеством любого множества, т.е. Ø А.

Пример:

Сколько можно составить подмножеств множества В?

1. В = {0, 1}, тогда {0} В, {1} В, Ø; В, {0, 1} В – четыре.

2. В = {1, 2, 3}, тогда {1} В, {2} В, {3} В, {1, 2} В, {1, 3} В, {2, 3} В, Ø; В, {1, 2, 3} В – восемь.

Можно доказать, что если в множестве n элементов, то оно имеет 2 n подмножеств.

Множества считаются равными, если они состоят из одних и тех же элементов. А также множества А и В равны, если А В и В А.

Пусть А= {2, 1, 3}, a В = {1, 2, 3} тогда А= В.

 







Дата добавления: 2015-04-16; просмотров: 567. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Принципы, критерии и методы оценки и аттестации персонала   Аттестация персонала является одной их важнейших функций управления персоналом...

Пункты решения командира взвода на организацию боя. уяснение полученной задачи; оценка обстановки; принятие решения; проведение рекогносцировки; отдача боевого приказа; организация взаимодействия...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

Ведение учета результатов боевой подготовки в роте и во взводе Содержание журнала учета боевой подготовки во взводе. Учет результатов боевой подготовки - есть отражение количественных и качественных показателей выполнения планов подготовки соединений...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия