ТЕОРИЯ МНОЖЕСТВ
«Каждый сам знает, что он понимает под множеством» Е.Борель
Основные понятия
Математика утверждает, что теория множества появилась на свет 7.12.1873 г. В этот день Г. Кантор (1845 – 1918 профессор математики и философии в Галле) написал письмо Дедекинду (1831 – 1918 немецкий математик), в котором утверждал, что ему удалось посредством множеств доказать, что действительных чисел больше, чем натуральных. Множество – основное математическое понятие. Его смысл выражается словами совокупность, набор и т. д. однотипных элементов, воспринимаемых как единое целое. Множества обозначают большими латинскими буквами. Например, А = {Коля, Петя, Маша, Ира}, В = {1, 2, 7}, С = {1, 2, 3, 4, …, n, …}. Все предметы, составляющие множества, называются элементами множества. Элементы множества обозначают маленькими латинскими буквами. Например, если элемент х принадлежит множеству К, то пишут х К, если элемент х не принадлежит множеству К, то пишут х К. Есть множество, в котором нет ни одного элемента. Его называют пустым множеством и обозначают Ø. Множество может быть конечным, если оно состоит из конечного числа элементов, и бесконечным, если оно содержит бесконечно много элементов. Примером конечного множества может служить множество дней недели, примером бесконечного множества – множество натуральных чисел. Из школьного курса вам известны примеры бесконечных числовых множеств – множеств натуральных, целых, рациональных и действительных чисел. Множество может быть задано: · перечислением. Например, К = {2, 4, 20, 40}; · характеристическим свойством, т.е. свойством, характерным только для элементов этого множества. Например, . Из элементов множества А = {Коля, Петя, Маша, Ира}, например, можно составить новое множество М = {Петя, Маша}. Оно характеризуется тем, что все элементы М принадлежат множеству А. Говорят, что М – подмножество множества А и пишут М А. Множество М является подмножеством множества А, если всякий элемент множества М является элементом множества А и обозначают М А. Например, множество всех первокурсников является подмножеством множества всех студентов. Для любого множества А справедливо: 1) Само множество является своим подмножеством, т.е. А А. 2) Пустое множество является подмножеством любого множества, т.е. Ø А. Пример: Сколько можно составить подмножеств множества В? 1. В = {0, 1}, тогда {0} В, {1} В, Ø В, {0, 1} В – четыре. 2. В = {1, 2, 3}, тогда {1} В, {2} В, {3} В, {1, 2} В, {1, 3} В, {2, 3} В, Ø В, {1, 2, 3} В – восемь. Можно доказать, что если в множестве n элементов, то оно имеет 2 n подмножеств. Множества считаются равными, если они состоят из одних и тех же элементов. А также множества А и В равны, если А В и В А. Пусть А= {2, 1, 3}, a В = {1, 2, 3} тогда А= В.
|