Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Возвратные уравнения





 

Определение. Уравнения вида

, где (1)

называются возвратными или симметричными.

 

Отличительной особенностью таких уравнений является равенство коэффициентов, равноотстоящих от его начала и конца.

Свойство 1. Возвратное уравнение не может иметь число 0 своим корнем. В самом деле, если допустить, что x = 0 - корень уравнения, тогда, при подстановке в уравнение, получим ложное равенство a = 0 (по определению ).

Свойство 2. Если возвратное уравнение имеет своим корнем число a, то оно имеет и корень, равный .

 

Доказательство

 

В самом деле, пусть x = a - корень возвратного уравнения

, причём ,

тогда, . (2)

Подставим в левую часть данного уравнение значение , получим:

или

,

но из равенства (2) следует, что , причем , следовательно, , а это и означает, что - корень данного возвратного уравнения (1).

При решении возвратных уравнений часто применяется подстановка

.

 

Пример 1. Решить уравнение на множестве действительных чисел

.

 

Решение

 

Это уравнение возвратное четной степени. Делим обе части уравнения на , тем более, что (следствие 1), получим уравнение:

, ,

.

Пусть , тогда, возводя обе части этого равенства в квадрат, получим: .

Подставляя новые переменные в уравнение, имеем:

.

Значение не удовлетворяет условию т является посторонним корнем. Остается одно значение: .

Делая обратную подстановку, получим .

Отсюда находим , .

 

Ответ: , .

 







Дата добавления: 2015-04-16; просмотров: 653. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

Гносеологический оптимизм, скептицизм, агностицизм.разновидности агностицизма Позицию Агностицизм защищает и критический реализм. Один из главных представителей этого направления...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия