Учтем наличие спина у частиц и сконструируем полные функции состояния, зависящие как от пространственных, так и от спиновых переменных
Если взаимодействие орбитального и спинового моментов мало, то полную функцию состояния можно представить в виде произведения функции , зависящей от пространственных координат частиц , , и функции спиновых координат , : . (15.19) Построенная таким образом -функция будет удовлетворять уравнению Шрёдингера, если его решением будет координатная часть . Очевидно, что функция будет симметричной, если и одновременно симметричны либо антисимметричны: ; . (15.20) Аналогично, если одна из функций (например, ) симметрична, а другая (в выбранном примере ) антисимметрична, то произведение их будет функцией, антисимметричной относительно перестановки частиц. Следовательно, имеются две возможности для получения антисимметричной функции : ; . (15.21) Свойство симметрии функции состояния системы одинаковых частиц может зависеть только от природы самих частиц. И, действительно, симметрия -функции определяется только спином частицы. Если спин частицы целочисленный ( 0, 1, 2,…) то -функция системы частиц будет симметричной; если спин частицы полуцелый ( 1/2, 3/2 …), то -функция системы частиц будет антисимметричной. Эти утверждения составляют содержание теоремы Паули. Частицы, обладающие целочисленным спином, называют бозонами, а частицы с полуцелым спином – фермионами. Если система состоит из одинаковых бозонов, то ее -функция симметрична по отношению к перестановке любой пары частиц. Если система, состоит из одинаковых фермионов, то -функция меняет знак при перестановке любой пары частиц, то есть является антисимметричной.
Простейшими после водородоподобных атомных систем являются атом гелия . Объясним разделение спектральных термов атома гелия и соответствующих им спектральных линий на синглетные и триплетные. Для этого нужно учесть спин электронов. В отсутствие спин-орбитального взаимодействия, как отмечено выше, пространственные и спиновые части собственной функции системы двух электронов разделяются. Так как спин может иметь значения, равные , то будут иметь место спиновые функции и . Тогда для системы двух электронов возможны следующие сочетания:
Из этих функций можно составить четыре комбинации, удовлетворяющие свойствам симметрии относительно перестановки электронов: ; + ; ; (16.22) + .
|