Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Билет 23. 1) Как исследуется динамическая устойчивость дискретных замкнутых САУ по их характеристическим уравнениям в форме Z-преобразований с использованием





1) Как исследуется динамическая устойчивость дискретных замкнутых САУ по их характеристическим уравнениям в форме Z-преобразований с использованием дискретного аналога алгебраического критерия Гурви­ца?

2) При входном воздействии в виде единичной ступенчатой решетчатой функции, имеющей Z-изображение G(z)=z/(z–l), определите Z-изображение выходной величины F(z)=W(z)G(z) и решетчатую функцию выходного процесса f [ n ] дискретного устройства с Z-функцией передачи W(z)=2/(z – 1).

Расчёт устойчивости замкнутой дискретной САУ по её характеристическому уравнению M(z)=0 с использованием дискретного аналога алгебраического критерия устойчивости Гурвица основан на преобразовании границы устойчивости в виде единичной окружности на комплексной плоскости z-корней уравнения M(z)=0 в мнимую ось на комплексной плоскости w-корней характеристического уравнения M(w)=0, где вся левая полуплоскость будет областью устойчивости, как в непрерывных системах.

Пример

Если ЗФП замкнутой дискретной САУ имеет вид

, (2.5.5)

то из (2.5.5) характеристическое уравнение замкнутой САУ будет равно:

(2.5.6)

Введем в (2.5.6) билинейную подстановку и получим выражение характеристического уравнения в w -комплексной плоскости в виде:

(2.5.7)

Умножив уравнение (2.5.7) на (1–w)3, получим:

(2.5.8)

Определитель Гурвица для уравнения третьего порядка запишется:

(2.5.9)

Следовательно, данная дискретная САУ устойчива. Критическое значение свободного члена а3КР характеристического уравнения САУ на границе устойчивости определяется из условия:

(2.5.10)

(2.5.11)

Запас устойчивости по увеличению коэффициента передачи в САУ

(2.5.12)







Дата добавления: 2015-04-19; просмотров: 429. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия