Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Графики функций двух переменных





Для построения графиков поверхностей и кривых в пространстве пред­назначена функция plot3d. Функция plot3d имеет два варианта вызова: один для явного задания функции и один для параметрического. В обоих случаях функция принимает три аргумента.

Синтаксис для явно заданной функции:

plot3d(выражение, [переменная1, начало, конец], [переменная2, начало, конец]);

- здесь аргументы аналогичны plot2d, с той разницей, что здесь независимых пере­менных две.

График параметрически заданной функции строится так:

plot3d([выражение1, выражение2, выражение3], [переменная1, начало, конец], [переменная2, начало, конец]);

- здесь выражения соответствуют, по порядку, x (u, v), y (u, v), z (u, v).

Для построения 3D графика функции в сферической системе коорди­нат используется функция

spherical (radius, azi, minazi, maxazi, zen, minzen, maxzen)

где функция radius(azi, zen) задается в сферических координатах.

Для построения 3D графика функции в цилиндрической системе коор­динат используется функция

cylindrical (radius,z,minz,maxz,azi,minazi,maxazi)

где функция radius(z, azi) задается в цилиндрических координатах.

Пример 1. Построить график поверхности z = 2x2 + 5y2 (эллиптический параболоид). После нажатия клавиш Shift+Enter или F5 формируется ячейка ввода, которой вводим команду plot3d(2*x^2-5*y^2,[x,-5,5],[y,-5,5])

(%i18) plot3d(2*x^2+5*y^2,[x,-5,5],[y,-5,5]);

открывается окно программы Gnuplot graph с графиком функции:

 

Аналогичным образом строим график гиперболического параболоида z = 4x2 - y2

(%i19) plot3d(4*x^2-y^2,[x,-5,5],[y,-5,5]);

Пример 2. Построить график поверхности эллиптического цилиндра .

Зададим уравнение эллиптического цилиндра в параметрической форме.

После нажатия клавиш Shift+Enter формируется ячейка ввода, в которой вводим команду plot3d([3*cos(t),2*sin(t),v],[t,-%pi,%pi],[v,0,10]);

(%i2) plot3d([3*cos(t),2*sin(t),v],[t,-%pi,%pi],[v,0,10]);

открывается окно программы Gnuplot graph с графиком функции:

 

Аналогичным образом строим график гиперболического цилиндра

Зададим уравнение гиперболического цилиндра в параметрической форме.

В ячейку ввода вводим команду plot3d([3*cosh(t),2*sinh(t),v],[t,-2,2],[v,0,10]);

(%i7) plot3d([3*cosh(t),2*sinh(t),v],[t,-2,2],[v,0,10]);

График гиперболического цилиндра имеет вид

Пример 3. Построить график поверхности трёхосного эллипсоида .

Зададим уравнение трёхосного эллипсоида в параметрической форме.

После нажатия клавиш Shift+Enter формируется ячейка ввода, в которой вводим команду plot3d([3*cos(u)*cos(v), 2*cos(u)*sin(v), sqrt(5)*sin(u)],[u,-%pi,%pi], [v,-%pi,%pi]);

(%i8) plot3d([3*cos(u)*cos(v), 2*cos(u)*sin(v), sqrt(5)*sin(u)],[u,-%pi,%pi], [v,-%pi,%pi]);

открывается окно программы Gnuplot graph с графиком функции:

Аналогичным образом строим график однополостного гиперболоида

Зададим уравнение однополостного гиперболоида в параметрической форме.

В ячейку ввода вводим команду plot3d([sqrt(2)*cos(u)*cosh(v), 3*sin(u)*cosh(v), sqrt(3)*sinh(v)],[u,-%pi,%pi], [v,-%pi,%pi]);

(%i9) plot3d([sqrt(2)*cos(u)*cosh(v), 3*sin(u)*cosh(v), sqrt(3)*sinh(v)],[u,-%pi,%pi],

[v,-%pi,%pi]);

График однополостного гиперболоида имеет вид

Аналогичным образом строим график двуполостного гиперболоида

Зададим уравнение двуполостного гиперболоида в параметрической форме.

В ячейку ввода вводим команду plot3d([2*cos(u)*sinh(v), sqrt(5)*sin(u)*sinh(v), sqrt(6)*cosh(v)],[u,-%pi,%pi], [v,-%pi,%pi]);

(%i12) plot3d([2*cos(u)*sinh(v), sqrt(5)*sin(u)*sinh(v), sqrt(6)*cosh(v)],[u,-%pi,%pi],

[v,-%pi,%pi]);

График двуполостного гиперболоида имеет вид







Дата добавления: 2015-06-15; просмотров: 542. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

Гносеологический оптимизм, скептицизм, агностицизм.разновидности агностицизма Позицию Агностицизм защищает и критический реализм. Один из главных представителей этого направления...

Функциональные обязанности медсестры отделения реанимации · Медсестра отделения реанимации обязана осуществлять лечебно-профилактический и гигиенический уход за пациентами...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия