Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Графики функций двух переменных





Для построения графиков поверхностей и кривых в пространстве пред­назначена функция plot3d. Функция plot3d имеет два варианта вызова: один для явного задания функции и один для параметрического. В обоих случаях функция принимает три аргумента.

Синтаксис для явно заданной функции:

plot3d(выражение, [переменная1, начало, конец], [переменная2, начало, конец]);

- здесь аргументы аналогичны plot2d, с той разницей, что здесь независимых пере­менных две.

График параметрически заданной функции строится так:

plot3d([выражение1, выражение2, выражение3], [переменная1, начало, конец], [переменная2, начало, конец]);

- здесь выражения соответствуют, по порядку, x (u, v), y (u, v), z (u, v).

Для построения 3D графика функции в сферической системе коорди­нат используется функция

spherical (radius, azi, minazi, maxazi, zen, minzen, maxzen)

где функция radius(azi, zen) задается в сферических координатах.

Для построения 3D графика функции в цилиндрической системе коор­динат используется функция

cylindrical (radius,z,minz,maxz,azi,minazi,maxazi)

где функция radius(z, azi) задается в цилиндрических координатах.

Пример 1. Построить график поверхности z = 2x2 + 5y2 (эллиптический параболоид). После нажатия клавиш Shift+Enter или F5 формируется ячейка ввода, которой вводим команду plot3d(2*x^2-5*y^2,[x,-5,5],[y,-5,5])

(%i18) plot3d(2*x^2+5*y^2,[x,-5,5],[y,-5,5]);

открывается окно программы Gnuplot graph с графиком функции:

 

Аналогичным образом строим график гиперболического параболоида z = 4x2 - y2

(%i19) plot3d(4*x^2-y^2,[x,-5,5],[y,-5,5]);

Пример 2. Построить график поверхности эллиптического цилиндра .

Зададим уравнение эллиптического цилиндра в параметрической форме.

После нажатия клавиш Shift+Enter формируется ячейка ввода, в которой вводим команду plot3d([3*cos(t),2*sin(t),v],[t,-%pi,%pi],[v,0,10]);

(%i2) plot3d([3*cos(t),2*sin(t),v],[t,-%pi,%pi],[v,0,10]);

открывается окно программы Gnuplot graph с графиком функции:

 

Аналогичным образом строим график гиперболического цилиндра

Зададим уравнение гиперболического цилиндра в параметрической форме.

В ячейку ввода вводим команду plot3d([3*cosh(t),2*sinh(t),v],[t,-2,2],[v,0,10]);

(%i7) plot3d([3*cosh(t),2*sinh(t),v],[t,-2,2],[v,0,10]);

График гиперболического цилиндра имеет вид

Пример 3. Построить график поверхности трёхосного эллипсоида .

Зададим уравнение трёхосного эллипсоида в параметрической форме.

После нажатия клавиш Shift+Enter формируется ячейка ввода, в которой вводим команду plot3d([3*cos(u)*cos(v), 2*cos(u)*sin(v), sqrt(5)*sin(u)],[u,-%pi,%pi], [v,-%pi,%pi]);

(%i8) plot3d([3*cos(u)*cos(v), 2*cos(u)*sin(v), sqrt(5)*sin(u)],[u,-%pi,%pi], [v,-%pi,%pi]);

открывается окно программы Gnuplot graph с графиком функции:

Аналогичным образом строим график однополостного гиперболоида

Зададим уравнение однополостного гиперболоида в параметрической форме.

В ячейку ввода вводим команду plot3d([sqrt(2)*cos(u)*cosh(v), 3*sin(u)*cosh(v), sqrt(3)*sinh(v)],[u,-%pi,%pi], [v,-%pi,%pi]);

(%i9) plot3d([sqrt(2)*cos(u)*cosh(v), 3*sin(u)*cosh(v), sqrt(3)*sinh(v)],[u,-%pi,%pi],

[v,-%pi,%pi]);

График однополостного гиперболоида имеет вид

Аналогичным образом строим график двуполостного гиперболоида

Зададим уравнение двуполостного гиперболоида в параметрической форме.

В ячейку ввода вводим команду plot3d([2*cos(u)*sinh(v), sqrt(5)*sin(u)*sinh(v), sqrt(6)*cosh(v)],[u,-%pi,%pi], [v,-%pi,%pi]);

(%i12) plot3d([2*cos(u)*sinh(v), sqrt(5)*sin(u)*sinh(v), sqrt(6)*cosh(v)],[u,-%pi,%pi],

[v,-%pi,%pi]);

График двуполостного гиперболоида имеет вид







Дата добавления: 2015-06-15; просмотров: 542. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Философские школы эпохи эллинизма (неоплатонизм, эпикуреизм, стоицизм, скептицизм). Эпоха эллинизма со времени походов Александра Македонского, в результате которых была образована гигантская империя от Индии на востоке до Греции и Македонии на западе...

Демографияда "Демографиялық жарылыс" дегеніміз не? Демография (грекше демос — халық) — халықтың құрылымын...

Субъективные признаки контрабанды огнестрельного оружия или его основных частей   Переходя к рассмотрению субъективной стороны контрабанды, остановимся на теоретическом понятии субъективной стороны состава преступления...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия