Студопедия — Кривые второго порядка на плоскости
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Кривые второго порядка на плоскости






Самое общее уравнение 2-й степени с двумя неизвест­ными имеет вид

Ах2 + Вху + Су2 + Dx + Еу + F = 0, (3.48)

при этом предполагается, что хотя бы один из коэффи­циентов А, В, С не равен нулю. Линии, соответствующие этому уравнению, называются кривыми 2-го порядка.

Простейшей такой кривой является окружность. Пусть центр окружности находится в точке М0(а, b) и радиус окружности равен R. Так как окружность есть множество точек, находящихся на заданном расстоянии от центра М 0, то | М0М | =R или

(x - а)2 + (уb)2 = R2. (3.49)

Кривыми 2-го порядка частично зна­комые из школьного курса математики, это эллипс, гипербола и парабола. Теперь рассмотрим теорию кривых 2-го порядка с более общих позиций и на основании их уравнений установим некоторые свойство этих кривых. Прежде всего дадим определение этих трех основных кривых, выведем их простейшие уравне­ния и исследуем их форму.

Определение 3.16. Эллипсом называется множество точек (на плоскости), сумма расстояний от которых до двух данных точек постоянна.

Выберем систему прямоугольных декартовых коорди­нат так, чтобы ось абсцисс проходила через обе задан­ные точки F1 и F2, а начало координат находилось в се­редине отрезка F1F2 (рис. 3.20).

Рис. 3.20 Рис. 3.21

Пусть М (х, у) одна из точек рассматриваемого мно­жества. Обозначим через 2 с расстояние между задан­ными точками F1 и F2 и через 2 а заданную сумму расстояний F1М и F2M. Очевидно, что точка F1 имеет координаты (-с, 0), а точка F2 координаты (с, 0).

По определению, имеем:

| F1М | + | F2M | = 2 a, (3.50)

отсюда получаем уравнение

= 2 a.

По существу это уравнение уже и есть уравнение рассматриваемого множества точек. Но оно имеет неудобный для исследования вид; преобразуем его к более простой форме

,

,

,

,

.

Так как 2 а > 2 с (сумма двух сторон треугольника больше 3-й его стороны), то а2—с2 > 0. Положим

а2 - с2 = b2.

Тогда окончательно в выбранной системе координат (см. рис. 3.21) получим уравнение

. (3.51)

Вид данной кривой представлен на рисунке 3.21. Точки F1 и F2 называются фокусами эллипса, чис­ла а и b полуосями эллипса, точки пересечения эл­липса с его осями симметрии — вершинами эллипса.

С изменением с меняется форма эллипса. Если с стре­мится к нулю, т. е. фокусы эллипса сливаются, то b стре­мится к а и эллипс становится окружностью с уравнени­ем х2 + у2 = а2, т. е. окружность есть частный случай эллипса, когда полуоси эллипса равны между собой.

Если же с стремится к а, то стремится к нулю и, следовательно, эллипс сжимается вдоль оси ординат. Значит, отношение с/а может служить мерой сжатия эллипса, мерой его отклонения от окружности.

Число е = с / а _(0 ≤ е < 1) называется эксцентриситетом эллипса.

Определение 3.17. Гиперболой называется множество точек (на плоскости), абсолютное значение разности расстояний от которых до двух данных точек постоянно (и отлично от нуля).

Систему координат выберем так же, как при выводе уравнения эллипса (рис. 3.22). Из определения имеем:

|| F1М | - | F2M || = 2 a,

,

,

,

.

Рис. 3.22.

Так как разность двух сторон треугольника меньше третьей его стороны, 2 а > 2 c. Положим с2 - а2 = b2. Тогда окончательно получаем

. (3.52)

Отметим некоторые свойства гиперболы. Эта линия симметрична на относительно осей координат и относительно начала координат.

Так как у = , то для всех точек кривой х ≥ а и нет точек кривой в полосе – а < x < a. Кривая состоит, следовательно, из двух отдельных частей — в е т ­в е й г и п е р б о л ы, одна из которых лежит в области х ≥ а, а другая — в области х ≤ - а (правая и левая вет­ви гиперболы).

Число а называется обычно в е щ е с т в е н н о й п о ­л у о с ь ю гиперболы, число b м н и м о й п о л у о с ь ю. Точки пересечения гиперболы с ее осью симметрии назы­ваются в е р ш и н а м и гиперболы, точки F1 и F2 — ее ф о к у с а м и.

Отметим еще одну особенность формы изучаемой линии. Рассмотрим вместе с гиперболой две прямые: у = , которым как угодно близко при подходят точки ветвей гиперболы. Эти прямые называются а с и м п т о т а м и гиперболы. Легко видеть, что асимптоты гиперболы направлены по диагоналям прямоугольника со сторонами 2 а и 2 b (см. рис. 3.18).

Третьей основной кривой 2-го порядка является пара­бола.

Определение 3.18. Параболой называется множество то­чек (на плоскости), равноотстоящих от заданной точки и заданной прямой.

Выберем ось абсцисс прямоугольной декартовой си­стемы координат так, чтобы она проходила через задан­ную точку F перпендикулярно к заданной прямой l, начало координат пусть находится в середине отрезка FK (рис. 3.23). Направление оси абсцисс указано на ри­сунке.

Рис. 3.23

Расстояние от точки Р да прямой l обозначив через р. Тогда точка F будет иметь координаты: (р/2, 0), а уравнение прямой l: х = -p/2.

Пусть М(х, у) —произвольная точка расположенной на параболе и А — основание перпендикуляра, опу­щенного из М на l.

Так как точка А имеет координаты (- р/2, у) и по определ ению | АМ |=| FM |, то , (х + р/2)2=(х - р/2)2 + у2,

и окончательно

. (3.53)

Отметим некоторые свойства параболы. Так как y 2 ≥ 0, то х не может быть отрицательным и все точки кривой лежат в правой полуплоскости. При возрастании х от 0 до + ∞ | неограниченно рас­тет. Ясно также, что кривая симметрична относительно оси абсцисс.

Заданная точка F назы­вается ф о к у с о м парабо­лы, точка пересечения пара­болы с ее осью симметрии — в е р ш и н о й параболы.







Дата добавления: 2015-06-15; просмотров: 429. Нарушение авторских прав; Мы поможем в написании вашей работы!



Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Studopedia.info - Студопедия - 2014-2024 год . (0.015 сек.) русская версия | украинская версия