Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Двойной интеграл в полярных координатах.





Известно, что двойной интеграл не зависит ни от способа разбиения области на части, ни от выбора точки . Рассмотрим область в полярной системе координат. Пусть полюс совпадает с началом координат, ось Ox – с полярной осью.

Разобьём область D на частичные области линиями

и , т.е. концентрическими окружностями и лучами, исходящими из полюса. Частичной областью будет криволинейный четырёхугольник.

Обозначим (среднее), .

В каждой площадке площадью возьмём точку , лежащую на дуге . Пусть в декартовой системе координат соответствует

; , тогда

, т.е.

(3)

Рассмотрим задачу замены переменных в двойном интеграле по области D в общем случае. Предполагается, что функции и взаимно однозначны, непрерывны и имеют непрерывные частные производные на , т.е. установлено взаимно-однозначное соответствие между и

 

Формула замены переменных для двойного интеграла для зависимостей

и имеет вид: , где

– функциональный определитель и или Якобиан (нем. мат. Густав Якоб Якоби 1804-1851).

Пример (Лунгу № 3.2.2):

Сведение двойного интеграла в полярных координатах к повторному.

Пусть полюс точки O не принадлежит области D.

Область D может быть заключена между двумя радиус-векторами, и .

Уравнение кривой ACB

Уравнение кривой AFB







Дата добавления: 2015-08-30; просмотров: 449. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия