Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Упругость идеального клубка





 

Первая теория эластичности каучука, так называемая кинетическая теория, была предложена в 1932 г. швейцарским ученым Мейером, далее она получила развитие и подтверждение в работах Марка, Джоуля, Куна. В этой теории предполагается, что энтропия каучука складывается аддитивно, исходя из энтропии отдельных цепей. Этот принцип позволяет, учитывая молекулярно-кинетическое движение сегментов макромолекул, сразу же выявить причину обратимости высокоэластической деформации в каучуках.

Как термодинамическая система, изолированный макромолекулярный клубок напоминает газовое облако, в котором роль молекул выполняют кинетически не зависимые отрезки цепи - сегменты. Самопроизвольное тепловое движение сегментов не меняет внутренней энергии системы, поэтому

 

 

Энтропию идеальной цепи можно вычислить, исходя из уравнения Больцмана:

 

 

где W - термодинамическая вероятность. В данном случае речь идет о конформационной энтропии, т.е. энтропии, связанной с возможностью реализации клубком множества конформаций. Величина W пропорциональна числу конформаций, возможных при заданном R. Поэтому W ~ P(R). Учитывая это и привлекая (2.13), имеем:

 

 

Подставляя (2.43) в (2.41), получаем:

 

 

Растяжение клубка под действием внешней силы приводит к отклонению R от наиболее вероятной величины , уменьшению числа возможных конформаций и, следовательно, уменьшению энтропии.

 

 

Последнее прямо следует из формулы (2.43). В результате, возникает упругая сила, противодействующая растягивающей и стремящаяся вернуть клубок к состоянию с исходным и максимумом энтропии. Выражение для величины упругой силы может быть получено, исходя из следующих соображений. Допустим, что один конец цепи закреплен, а к другому приложена сила ƒ (рис. 2.23).

Под действием этой силы конец цепи стремится на расстояние dx, дальнейшему смещению будет препятствовать упругая сила -ƒ, равная по величине, но противоположная по направлению приложенной силе. Поскольку при V = const, F = ;/ dx и в данном случае dx = dR, то

 

 

В рассматриваемой модели векторы и параллельны. Поэтому отношение R/ можно рассматривать как относительную деформацию, и тогда уравнение (2.45) по содержанию становится аналогичным уравнению Гука. Из этой аналогии следует, что модуль упругости изолированного идеального клубка пропорционален 3 , следовательно, он увеличивается с повышением температуры. Такое поведение также характерно для идеального газа. При сжатии клубка изменение функции Гиббса удобнее оценивать, пользуясь другой моделью. Рассмотрим идеальный гауссов клубок, содержащий п звеньев, помещенный внутрь непроницаемой для него сферы с диаметром D, причем

 

 

D < (рис. 2.23, б). Очевидно, что в таких условиях цепь будет касаться стенок сферы в нескольких точках. Пусть средний отрезок цепи, заключенный между двумя контактами со стенкой, содержит в среднем n * звеньев. Тогда, очевидно, что число контактов клубка со сферой равно n / n * и на каждом из этих контактов макромолекулярный клубок теряет половину своего конформационного набора (Это становится ясно при выполнении процедуры построения свободно сочлененной цепи, рассмотренной в разд. 2.1.1 с учетом выражений (2.1), (2.2) и (2.5).). Следовательно, изменение энтропии, вызванное сжатием клубка в сфере, исходя из формулы Больцмана, будет равно:

 

где S и S0 - энтропия деформированного и невозмущенного клубка.

 

Таким образом, как растяжение, так и сжатие клубка приводят к уменьшению энтропии и возникновению упругой силы, которая стремится вернуть систему к исходному состоянию с максимумом энтропии, соответствующему среднеквадратичному размеру недеформированного клубка (рис. 2.24).

 







Дата добавления: 2015-08-17; просмотров: 624. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Философские школы эпохи эллинизма (неоплатонизм, эпикуреизм, стоицизм, скептицизм). Эпоха эллинизма со времени походов Александра Македонского, в результате которых была образована гигантская империя от Индии на востоке до Греции и Македонии на западе...

Демографияда "Демографиялық жарылыс" дегеніміз не? Демография (грекше демос — халық) — халықтың құрылымын...

Субъективные признаки контрабанды огнестрельного оружия или его основных частей   Переходя к рассмотрению субъективной стороны контрабанды, остановимся на теоретическом понятии субъективной стороны состава преступления...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия