Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Модель Кельвина. Ползучесть





 

В модели Кельвина упругий и вязкий элементы соединены параллельно (см. рис. 2.28, б). Сила, прилагаемая к модели, эквивалентна напряжениям, развивающимся в вязкоупругом теле, а смещение точек A и Б относительно друг друга - деформации. Данная модель описывает закономерности деформации вязкоупругого тела, которому наиболее полно отвечает сшитый каучук или резина. При приложении к модели силы растягивается пружина и перемещается поршень в цилиндре. Благодаря параллельному соединению упругого и вязкого элементов возникают две характерные особенности деформации:

пружина не может мгновенно растягиваться и сжиматься, поскольку поршень перемещается в вязкой жидкости;

после снятия нагрузки цилиндр в поршне возвращается пружиной к исходному положению, т. е. деформация носит обратимый характер.

Таким образом, в данном случае мы имеем дело с обратимой деформацией, отличающейся от деформации идеально упругого тела тем, что она протекает во времени. Такой вид упругости называется эластичностью или высокоэластичностью.

При мгновенном задании какого-либо напряжения σ = const развитие деформации происходит с запаздыванием, т.е. со временем деформация будет возрастать. Это явление называется ползучестью. Оно описывается уравнением:

 

 

где ε0 - предельно достигаемая деформация, которая зависит от модуля упругости пружины Eупр:

 

 

а θ - время запаздывания - параметр, характеризующий скорость ползучести; он равен времени, за которое деформация достигнет значения, равного (1 – 1/ е) ≈ 0,63 от предельного равновесного. Параметр θ связан с характеристиками модели соотношением:

 

 







Дата добавления: 2015-08-17; просмотров: 659. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия