Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Абсолютное и относительное движение точки. переносное движение .скорость точки при сложном движении





Направление полного ускорения определим по тангенсу уг­ла α, который полное ускорение образует с нормальным ускоре­нием (рис. 52). Получим

tgα=

tgα=

В ряде случаев приходится рассматривать движение точки по отношению к системе координат О1ξηζ, которая, в свою очередь, движется по отношению к другой системе координат Охуz условно принятой в качестве неподвижной. В механике каждую из указан­ных систем координат связывают с некоторым телом. Например, рас­смотрим качение без скольжения колеса вагона по рель­су. С рельсом свяжем неподвижную систему координат Аху, а подвижную систему Oξη свяжем с центром колеса и предположим, что она движется поступательно. Движе­ние точки на ободе колеса является составным или сложным.

Введем следующие определения:

Переносным движением точки называется ее движение в рассматриваемый момент времени вместе с подвижной системой координат относительно неподвижной системы координат.

Переносная скорость и переносное ускорение точки обозначается индексом е: , .

Переносной скоростью (ускорением ) точки М в данный момент времени называют вектор, равный скорости (ускорению ) той точки m подвижной системы координат, с которой совпадает в данный момент движущая точка М (рис. 8.1).

Проведем радиус-вектор начала координат (рис. 8.1). Из рисунка видно, что

. (8.4)

Чтобы найти переносную скорость точки в заданный момент времени необходимо продифференцировать радиус-вектор при условии, что координаты точки x, y, z не изменяются в данный момент времени:

. (8.5)

Переносное ускорение соответственно равно

. (8.6)

Таким образом для определения переносной скорости и переносного ускорения в данный момент времени необходимо мысленно остановить в этот момент времени относительное движение точки, определить точку m тела, неизменно связанного с подвижной системой координат, где находится в остановленный момент точка М, и вычислить скорость и ускорение точки m тела, совершающего переносное движение относительно неподвижной системы координат.

 

Сложным движением точки называется такое ее движение, при кото­ром она движется относительно системы отсчета, перемещающейся по отношению к некоторой другой системе отсчета, принятой за непод­вижную. Например, можно считать, что пассажир, идущий по вагону движущегося поезда, со­вершает сложное движение по отношению к полотну дороги, состоящее из движения пассажира по отношению к вагону (подвижная система отсчета) и дви­жения пассажира вместе с вагоном по отношению к полотну дороги (неподвижная система отсчета).

Движение точки по отношению к подвижной системе ко­ординат называется относительным движением точки. Скорость и ускорение этого движения называют относитель­ной скоростью и относительным ускорением и обозначают и .

Движение точки, обусловленное движением подвижной системы координат, называется переносным движением точки.

Переносной скоростью и переносным ускорением точкина­зывают скорость и ускорение той, жестко связанной с под­вижной системой коор­динат точки, с которой совпадает в дан­ный момент времени движущаяся точка, и обозначают и .

Движение точки по отношению к неподвижной системе координат называ­ется абсолютным или сложным. Скорость и ускорение точки в этом движении называют абсолютнойскоростью и абсолютным ускорением и обозначают и .

В приведенном выше примере движение пассажира относительно вагона будет относительным, а скорость – относительной скоростью пассажира; движение вагона по отношению к полотну дороги будет для пассажира переносным движением, а скорость вагона, в котором находится пассажир, будет в этот момент его переносной скоростью; наконец, движение пассажира по отношению к полотну будет его абсолютным движением, а скорость – абсолютной скоростью.

 

§ 21. Определение скорости точки при сложном

движении

Пусть имеется неподвижная система отсчета по отношению к кото­рой движется подвижная система отсчета . Относительно подвижной системы координат движет­ся точка (рис. 2.26). Уравнение движения точки , находящейся в сложном движении, можно задать векторным способом

 

, (2.67)

 

где - радиус-вектор точки , определяющий ее положение относительно

не­подвижной системы отсчета ;

- радиус-вектор, определяющий положение начала отсчета подвижной

системы координат ;

- радиус-вектор рассматриваемой точки , определяющий ее

положение относительно подвижной системы координат.

Пусть координаты точки в подвижных осях. Тогда

, (2.68)

 

где - единичные векторы, направленные вдоль под­вижных осей . Подставляя (2.68) в равенство (2.67), полу­чим:

 

. (2.69)

При относительном движении координаты изменя­ются с течением времени. Чтобы найти скорость относитель­ного движения, нужно продиффе­ренцировать радиус-вектор по времени, учитывая его изменение только за счет относи­тельного движе­ния, то есть только за счет изменения коор­динат , а подвижную систему координат предполагать при этом неподвижной, то есть вектора считать не зависящими от времени. Дифференцируя равенство (2.68) по времени с учетом сде­ланных оговорок, получим относитель­ную скорость:

 

, (2.70)

 

где точки над величинами означают производные от этих ве­личин по времени:

 

, , .

 

Если относительного движения нет, то точка будет двигаться вместе с подвижной системой - координат и ско­рость точки будет равна переносной скорости. Таким обра­зом, выражение для переносной скорости можно полу­чить, если продифференцировать по времени радиус-вектор , считая не за­висящими от времени:

. (2.71)

 

Выражение для абсолютной скорости найдем, дифферен­цируя по времени , учитывая, что от времени зависят относительные координаты и орты подвижнойсистемы координат:

 

. (2.72)

 

В соответствии с формулами (2.70), (2.71) первая скобка в (2.72) есть переносная ско­рость точки, а вторая - относитель­ная. Итак,

. (2.73)

Равенство (2.73) выражает теорему о сложении скоростей: абсолютная скорость точки равна геометрической сумме переносной и относительной скоро­стей.

Ответы по статике







Дата добавления: 2015-08-27; просмотров: 1039. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия