Абсолютное и относительное движение точки. переносное движение .скорость точки при сложном движении
Направление полного ускорения определим по тангенсу угла α, который полное ускорение образует с нормальным ускорением (рис. 52). Получим tgα= tgα=
В ряде случаев приходится рассматривать движение точки по отношению к системе координат О1ξηζ, которая, в свою очередь, движется по отношению к другой системе координат Охуz условно принятой в качестве неподвижной. В механике каждую из указанных систем координат связывают с некоторым телом. Например, рассмотрим качение без скольжения колеса вагона по рельсу. С рельсом свяжем неподвижную систему координат Аху, а подвижную систему Oξη свяжем с центром колеса и предположим, что она движется поступательно. Движение точки на ободе колеса является составным или сложным. Введем следующие определения: Переносным движением точки называется ее движение в рассматриваемый момент времени вместе с подвижной системой координат относительно неподвижной системы координат. Переносная скорость и переносное ускорение точки обозначается индексом е: , . Переносной скоростью (ускорением ) точки М в данный момент времени называют вектор, равный скорости (ускорению ) той точки m подвижной системы координат, с которой совпадает в данный момент движущая точка М (рис. 8.1). Проведем радиус-вектор начала координат (рис. 8.1). Из рисунка видно, что . (8.4) Чтобы найти переносную скорость точки в заданный момент времени необходимо продифференцировать радиус-вектор при условии, что координаты точки x, y, z не изменяются в данный момент времени: . (8.5) Переносное ускорение соответственно равно . (8.6) Таким образом для определения переносной скорости и переносного ускорения в данный момент времени необходимо мысленно остановить в этот момент времени относительное движение точки, определить точку m тела, неизменно связанного с подвижной системой координат, где находится в остановленный момент точка М, и вычислить скорость и ускорение точки m тела, совершающего переносное движение относительно неподвижной системы координат.
Сложным движением точки называется такое ее движение, при котором она движется относительно системы отсчета, перемещающейся по отношению к некоторой другой системе отсчета, принятой за неподвижную. Например, можно считать, что пассажир, идущий по вагону движущегося поезда, совершает сложное движение по отношению к полотну дороги, состоящее из движения пассажира по отношению к вагону (подвижная система отсчета) и движения пассажира вместе с вагоном по отношению к полотну дороги (неподвижная система отсчета). Движение точки по отношению к подвижной системе координат называется относительным движением точки. Скорость и ускорение этого движения называют относительной скоростью и относительным ускорением и обозначают и . Движение точки, обусловленное движением подвижной системы координат, называется переносным движением точки. Переносной скоростью и переносным ускорением точкиназывают скорость и ускорение той, жестко связанной с подвижной системой координат точки, с которой совпадает в данный момент времени движущаяся точка, и обозначают и . Движение точки по отношению к неподвижной системе координат называется абсолютным или сложным. Скорость и ускорение точки в этом движении называют абсолютнойскоростью и абсолютным ускорением и обозначают и . В приведенном выше примере движение пассажира относительно вагона будет относительным, а скорость – относительной скоростью пассажира; движение вагона по отношению к полотну дороги будет для пассажира переносным движением, а скорость вагона, в котором находится пассажир, будет в этот момент его переносной скоростью; наконец, движение пассажира по отношению к полотну будет его абсолютным движением, а скорость – абсолютной скоростью.
§ 21. Определение скорости точки при сложном движении Пусть имеется неподвижная система отсчета по отношению к которой движется подвижная система отсчета . Относительно подвижной системы координат движется точка (рис. 2.26). Уравнение движения точки , находящейся в сложном движении, можно задать векторным способом
, (2.67)
где - радиус-вектор точки , определяющий ее положение относительно неподвижной системы отсчета ; - радиус-вектор, определяющий положение начала отсчета подвижной системы координат ; - радиус-вектор рассматриваемой точки , определяющий ее положение относительно подвижной системы координат. Пусть координаты точки в подвижных осях. Тогда , (2.68)
где - единичные векторы, направленные вдоль подвижных осей . Подставляя (2.68) в равенство (2.67), получим:
. (2.69) При относительном движении координаты изменяются с течением времени. Чтобы найти скорость относительного движения, нужно продифференцировать радиус-вектор по времени, учитывая его изменение только за счет относительного движения, то есть только за счет изменения координат , а подвижную систему координат предполагать при этом неподвижной, то есть вектора считать не зависящими от времени. Дифференцируя равенство (2.68) по времени с учетом сделанных оговорок, получим относительную скорость:
, (2.70)
где точки над величинами означают производные от этих величин по времени:
, , .
Если относительного движения нет, то точка будет двигаться вместе с подвижной системой - координат и скорость точки будет равна переносной скорости. Таким образом, выражение для переносной скорости можно получить, если продифференцировать по времени радиус-вектор , считая не зависящими от времени: . (2.71)
Выражение для абсолютной скорости найдем, дифференцируя по времени , учитывая, что от времени зависят относительные координаты и орты подвижнойсистемы координат:
. (2.72)
В соответствии с формулами (2.70), (2.71) первая скобка в (2.72) есть переносная скорость точки, а вторая - относительная. Итак, . (2.73) Равенство (2.73) выражает теорему о сложении скоростей: абсолютная скорость точки равна геометрической сумме переносной и относительной скоростей. Ответы по статике
|