Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вычисления ускорения точки при естественном способе задания точки





Используя определение вектора ускорения (1.6) и формулу (2.1), получаем:

         (а)

Вычислим вектор . Прежде всего, найдем направление этого вектора. Рассмотрим тождество

Дифференцируя это тождество по скалярному аргументу , получаем:

или

Но в общем случае вектор изменяет со временем свое направление, так что Следовательно, скалярное произведение обратилось в нуль потому, что сомножители взаимно перпендикулярны.

Таким образом, вектор перпендикулярен касательной, т.е. направлен по нормали к траектории. Ранее было показано, что вектор ускорения лежит в соприкасающейся плоскости. Следовательно, речь идет о главной нормали. Таким образом,

(б)

Остается вычислить

Пусть и две близкие точки траектории. В точке проведем главную нормаль В точке построим нормаль , пересекающую в точке главную нормаль, построенную в точке (если траектория плоская кривая, то также будет главной нормалью). Угол между двумя близкими касательными, угол , называется углом смежности. В силу близости точек и угол между нормалями и приближенно равен углу (для плоской кривой это равенство точное). В силу малости дугу можно считать дугой окружности радиуса . Тогда Из равнобедренного треугольника определяем

Тогда

где — предельное значение радиуса окружности, дуга которой в бесконечно малой окрестности точки совпадает с дугой траектории. Эта окружность расположена в соприкасающейся плоскости, построенной для точки . Ее центр лежит на главной нормали и называется центром кривизны траектории в точке . Ее радиус называется радиусом кривизны траектории в точке .

Окончательно получаем:

 

 

Совокупность приложенных к телу сил называется системой сил.







Дата добавления: 2015-08-27; просмотров: 759. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Упражнение Джеффа. Это список вопросов или утверждений, отвечая на которые участник может раскрыть свой внутренний мир перед другими участниками и узнать о других участниках больше...

Влияние первой русской революции 1905-1907 гг. на Казахстан. Революция в России (1905-1907 гг.), дала первый толчок политическому пробуждению трудящихся Казахстана, развитию национально-освободительного рабочего движения против гнета. В Казахстане, находившемся далеко от политических центров Российской империи...

Виды сухожильных швов После выделения культи сухожилия и эвакуации гематомы приступают к восстановлению целостности сухожилия...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия