Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Уравнения плоского движения.





Основная теорема

Движение плоской фигуры в своей плоскости складывается из двух движений: поступательного вместе с произвольно выбранной точкой (полюсом), и вращательного вокруг этого полюса.

Положение плоской фигуры на плоскости определяется положением выбранного полюса и углом поворота вокруг этого полюса, поэтому плоское движение описывается тремя уравнениями:

 

 

Первые два уравнения (рис.5) определяют то движение, которое фигура совершала бы при φ = const, очевидно, что это движение будет поступательным, при котором все точки фигуры будут двигаться так же, как полюс А.

Третье уравнение определяет движение, которое фигура совершала бы при хА = const и уА = const, т.е. когда полюс А будет неподвижен; это движение будет вращением фигуры вокруг полюса А.

При этом вращательное движение не зависит от выбора полюса, а поступательное движение характеризуется движением полюса.

Зависимость между скоростями двух точек плоской фигуры.

Рассмотрим две точки А и В плоской фигуры. Положение точкиВ относительно неподвижной системы координат Оху определяется радиусом-вектором rB (рис.5):

rB = rA + ρ;,

где rA - радиус-вектор точки А, ρ = АВ

вектор, определяющий положение точки В

относительно подвижных осей Ах1у1, перемещающихся поступательно вместе с полюсом А параллельно неподвижным осям Оху.

Тогда скорость точки В будет равна

.

В полученном равенстве величина является скоростью полюса А.

Величина равна скорости, которую точка В получает при = соnst, т.е. относительно осей Ах1у1 при вращении фигуры вокруг полюса А. Введем для этой скорости обозначение :

.

Следовательно,

Скорость любой точки В плоской фигуры равна геометрической сумме скорости VA выбранного полюса А и скорости VBA точки во вращательном движении вокруг полюса (рис.6):

. (2)

Скорость вращательного движения точки направлена перпендикулярно отрезку АВ и равна

Модуль и направление скорости точки В находится построением соответствующего параллелограмма (рис.6).







Дата добавления: 2015-08-27; просмотров: 561. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия