Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Дифференциальное уравнение движения механической системы в обобщенных координатах (уравнение Лагранжа 2-го рода)





Полагаем, что механическая система состоит из n -точек, имеет S -степеней свободы. Рассмотрим движение i -точки, которое опишем радиус–вектором , который является функцией обобщенных координат и времени:

Тогда скорость i -точки :

При условии стационарных связей . Тогда, продифференцировав по , получим:

(1)

Уравнение (1) также называют тождеством Лагранжа.

Теперь рассмотрим кинетическую энергию системы. Она есть функция обобщенных координат, обобщенных скоростей и времени.

Для системы точек:

Вычисляем частное производную по по q и по t:

Подставляя уравнения (1), получаем:

(2)

Возьмем полный дифференциал по t:

(3)

Уравнение (3) является дифференциальным уравнением системы в обобщенных координатах или уравнением Лагранжа 2 рода.

Количество этих уравнений зависит от числа степеней свободы s.

Алгоритм решения задач с применением уравнения Лагранжа 2 рода можно разбить на 6 пунктов:

1) выбрать обобщенную координату и определить число степеней свободы s;

2) вычислить кинетическую энергию системы через обобщенную координату;

3) записать уравнение Лагранжа 2 рода в соответствии с выбранной обобщенной координатой;

4) дифференцируем в соответствии с уравнением;

5) определяем обобщенную силу, соответствующую выбранной обобщенной координате. Для этого сначала надо определить потенциальную энергию системы или работу системы:

;

6) все найденные величины подставить в уравнение Лагранжа.

 

 







Дата добавления: 2015-08-27; просмотров: 616. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Виды и жанры театрализованных представлений   Проживание бронируется и оплачивается слушателями самостоятельно...

Что происходит при встрече с близнецовым пламенем   Если встреча с родственной душой может произойти достаточно спокойно – то встреча с близнецовым пламенем всегда подобна вспышке...

Реостаты и резисторы силовой цепи. Реостаты и резисторы силовой цепи. Резисторы и реостаты предназначены для ограничения тока в электрических цепях. В зависимости от назначения различают пусковые...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия