Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вероятность попадания результата однократного измерения в заданный интервал





Для распределения Гаусса вероятность попадания результата измерения в определённый интервал при однократном измерении, согласно (3.1.6), определяется по формуле:

P (в пределах ) = , (3.3.1)

где t – положительное число, – полуширина задаваемого интервала.

После подстановки , получим:

Р (в пределах ) = (3.3.2)

Этот интеграл называют функцией ошибок (или нормальным интегралом ошибок), который обозначается erf(t). Его значение при произвольном t аналитически не вычисляется и определяется только численными методами. В таблице 2 Приложения приведены значения функции ошибок для различных значений t. Вероятность может быть определена как в виде десятичной дроби, так и в процентах. На рис.7 изображена зависимость функции ошибок от параметра t в процентах.

Рис.7

Из таблицы 2 Приложения или рис.7 видно, например, что вероятность попадания в интервал полуширина которого соответствует одному стандартному отклонению равна 68%, 2 – 95%, 3 – 99,7%, то есть с увеличением t вероятность попадания в интервал с пределами t быстро стремиться к 100%.

Используя таблицу 2 Приложения легко определить вероятность попадания результата единичного измерения в интервал с произвольными границами x1 и x2, то есть когда x1 и x2 отличаются от X на одинаковое значение .

Вероятность того, что ожидаемый результат однократного измерения окажется вне определённого интервала можно определить по формуле:

Р (вне ) = 100% – Р (в пределах ). (3.3.3)

Поэтому, например, вероятность попадания результата единичного измерения за пределы интервала с полушириной от истинного значения Х очень мала и составляет всего 0,3%.







Дата добавления: 2015-08-27; просмотров: 701. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Стресс-лимитирующие факторы Поскольку в каждом реализующем факторе общего адаптацион­ного синдрома при бесконтрольном его развитии заложена потенци­альная опасность появления патогенных преобразований...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия