Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Распределение Стьюдента





Ранее было показано, что величина является лишь наилучшей оценкой истинного значения измеряемой величины. Вместе с этим, наилучшей оценкой стандартного отклонения среднего является величина . Таким образом, мы имеем дело с некоторыми приближениями. Ясно, что распределение случайных погрешностей будет тем существенней отличаться от функции Гаусса, чем меньше выполнено измерений.

Английский химик и математик В.С. Госсет, публиковавший свои работы под псевдонимом Стьюдент, получил формулу для нахождения распределения погрешностей средних значений, получаемых при конечном числе измерений. Причём им была получена зависимость вероятности попадания получаемого результата в определённый интервал то числа измерений. Однако эта зависимость имеет сложный характер и не выражается через элементарные функции.

На основе распределения Стьюдента были составлены таблицы коэффициентов Стьюдента , которые показывают во сколько раз нужно увеличить величину , чтобы при определённом числе измерений n получить задаваемую вероятность (надёжность) . Коэффициенты Стьюдента представлены в Таблице 1 Приложения.

В результате можно записать:

, (3.8.1)

где – доверительный интервал, который означает, что истинное значение измеряемой величины находится в интервале с вероятностью или надёжностью , где

. (3.8.2)







Дата добавления: 2015-08-27; просмотров: 480. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия