Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Каноническая форма Жордана





 

Это представление уравнений состояния также отличается специальным видом матрицы коэффициентов А, которая в данном случае имеет форму Жордана

где - собственные числа матрицы А, которые рассчитывают как

корни характеристического уравнения САУ A(s)=0.

Как видно, матрица коэффициентов А является диагональной. Это свойство матрицы упрощает вычисления, т.к. матрица Жордана имеет наибольшее количество нулевых элементов. Матрицы входа и выхода в рассматриваемом

представлении являются векторами соответственно В = [l 1... l]T и С =[c c … сп], a D - скаляром вида D = d .

Следовательно, одномерную САУ описывают уравнениями состояния и выхода вида

Структурная схема САУ, соответствующая уравнениям (21), изображена на рисунке 8.

Коэффициенты c c … сп, и d рассчитывают следующим образом

где Ф(s) = - основная ПФ САУ.

В общем случае характеристическое уравнение САУ D(s) = 0 имеет п различных действительных корней . Поэтому характеристический полином можно представить в виде

 

D(s)=

 

а ПФ системы можно разложить на сумму элементарных дробей

 

Ф(s)=

Разложение ПФ на простейшие дроби (компоненты) обусловливает диагональную форму Жордана матрицы А только при отсутствии кратных корней характеристического уравнения. Рассматриваемый метод канонического разложения применяют в случае действительных корней , т.к.

комплексные корни существенно усложняют расчет.

Каноническая форма Жордана удобнее тем, что ММ САУ n-го порядка представляет собой систему уравнений п независимых подсистем первого порядка (16), что упрощает расчет динамики САУ.







Дата добавления: 2015-08-29; просмотров: 872. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Пункты решения командира взвода на организацию боя. уяснение полученной задачи; оценка обстановки; принятие решения; проведение рекогносцировки; отдача боевого приказа; организация взаимодействия...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия