Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение. Схема алгоритма дихотомии показана на рисунке 5.3





Схема алгоритма дихотомии показана на рисунке 5.3

A, B, E
X: = (A + B)/2
Определить F (X)
Начало
F (X)∙ F (B) < 0
A:= X
B:= X
| AB | < E
Печать X
Конец
Нет
Нет
Да
Да

 


Рисунок 5.3 – Схема алгоритма дихотомии

 

 

Пример 5.4. Методом половинного деления найти корень уравнения на отрезке [0.05; 1.5] с точностью ε = 0.001. Составить программу.

Решение

Схема алгоритма будет иметь вид, приведённый на рисунке 5.4.

Вначале задаются значения границ отрезка [ a; b] и точность, с которой должен быть найден корень. Затем вычисляется значение функции в точке а

.

В середине отрезка [ a; b ] (точка x = (a + b)/2) вычисляется функция . Проверка f (af (x) < 0 определяет, имеют ли значения функции на границах отрезка [ a; x ] разные знаки.

Если условие f (af (x) < 0 верно, то корень находится на отрезке [ x; b ].

Если условие f (af (x) < 0 ложно, то корень находится на отрезке [ a; x ].

При этом задаются новые значения для a или b. Таким образом, новый отрезок [а; b] на котором отыскивается корень, становится в 2 раза меньше предыдущего.

Если достигнута заданная точность, то выводят на печать найденное значение корня. В противном случае процесс деления интервала пополам продолжается.

f (a) = 2 e 1 – a – 3.5 sin a
a = 0.05; b = 1.5; ε = 0.001
Начало
f (a)∙ f (x) < 0
b = x; f (b) = f (x)
| ba | > ε
Вывод x
Конец
Нет
Нет
Да
Да
x = (a + b)/2
f (x) = 2 e 1 – x – 3.5 sin x
a = x; f (a) = f (x)

 


Рисунок 5.4 – Схема алгоритма дихотомии

 

[kgl].

 

[gl] Тема 6. Метод итерации в решении уравнений. Схема алгоритма простой итерации. Расходящийся процесс в простой итерации [:]

 

Пусть задана функция f (x), требуется найти корни уравнения

f (x) = 0. (6.1)

Метод простых итераций (последовательных приближений) является наиболее общим, и многие другие методы можно представить как некоторую вариацию метода простых итераций.

Представим уравнение (6.1) в виде

x = ψ (x). (6.2)

Это можно сделать, например, прибавив x к обеим частям уравнения (6.1).

Рассмотрим последовательность чисел xi, которая определяется следующим образом:

xk +1 = ψ (xk), x 0 принадлежит [ a; b].

Метод простых итераций имеет следующую наглядную геометрическую интерпретацию (рисунок 6.1). Решением уравнения (6.2) будет абсцисса точки пересечения прямой y = x с кривой y = ψ (x). При выполнении итераций значение функции ψ (x) в точке xi необходимо отложить по оси абсцисс. Это можно сделать, если провести горизонталь до пересечения с прямой y = x и из точки их пересечения опустить перпендикуляр на ось абсцисс. На рисунке 6.1 показаны разные ситуации: a) сходимость к корню односторонняя; b) сходимость с разных сторон.

f (x) = 0
y = ψ (x)
x 0
x 1
x 2
x
y
O
y = x
f (x) = 0
y = ψ (x)
x 0
x 1
x 2
x
y
O
y = x
x 3
a)
b)

 

 


Рисунок 6.1 – Приближение к корню методом простой итерации

Сходимость процесса приближения к корню в значительной степени определяется видом зависимости ψ (x). На рисунке 6.2 показан расходящийся процесс, при котором метод простой итерации не находит решения уравнения.

На рисунке 6.2 расходящийся процесс наблюдается для более быстро меняющейся функции |ψ'(x)| > 1.

Можно сделать вывод, что для обеспечения сходимости метода простой итерации необходимо выполнить условие |ψ'(x)| < 1.

На практике в качестве рассматриваемой окрестности используют интервал [ a; b], а условие сходимости итерационного процесса имеет вид:

|ψ′(x)| < 1.

x 2
x 1
x 0
x
y
 
f (x) = 0
y = ψ (x)
y = x
xn

 

 


Рисунок 6.2 – Расходящийся процесс в методе простой итерации

Для сходящегося итерационного процесса характерно следующее: при решении задачи переменная последовательно стремится к некоторому искомому пределу. Так как итерационный процесс представляет собой последовательность повторяющихся вычислительных процедур, то он, естественно, описывается циклическими алгоритмами. Особенность итерационного цикла заключается в том, что неизвестен закон изменения рекуррентной величины, выбранной в качестве параметра цикла, и неизвестно число повторений цикла. При этом значение, полученное на п-й итерации, является исходным для следующей (п + 1)-й итерации (рисунок 6.3).

 

ε = 0.001
Начало
| f i | < ε
Конец
Нет
Да
Номер итерации i = 0
xi + 1 = ψ(xi)
Ввод начальной точки x 0
i = i + 1
Вывод xi и fi

 

 


Рисунок 6.3 – Схема алгоритма простой итерации

Процесс итераций продолжается до тех пор, пока для двух последовательных приближений xn +1 и xn не будет обеспечено выполнение неравенства

| xnxn – 1| ≤ ε

где ε – точность вычислений.

 

Пример 6.1. Методом итераций уточнить с точностью до 10 –4 корень уравнения 5 x 3 – 20 x + 3 = 0, заключённый на отрезке [0; 1].







Дата добавления: 2015-08-29; просмотров: 440. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия