Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Определение кривой профиля червячной фрезы





Профиль фрезы представляет огибающую семейства профиля изделия при качении без скольжения его начальной окружности по начальной прямой фрезы. Поэтому задача сводится к определению уравнения семейства профиля изделия и уравнения их огибающей.

Принимаются две декартовы системы координат: подвижная система координат и неподвижная . В начальный момент времени обе системы координат совпадают.

Ось ОХ расположена по начальной прямой (рис. 1.1); начало неподвижной системы координат в начальный момент совпадает с полюсом зацепления, а на оси ОУ лежит центр начальной окружности.

Рис. 1.1. Аналитическое определение профиля фрезы как огибающей профиля изделия

Профиль зуба фрезы определяется в неподвижной системе координат. В подвижной системе определяется профиль шлицевого валика. При перекатывании начальной окружности по начальной прямой без скольжения на угол линия профиля займет положение (уже в подвижной системе координат ).

Уравнение линии в системе как проходящей через начало координат:

или (1.2)

Формулы перехода от подвижной системы координат к неподвижной имеют вид системы уравнений:

(1.3)

где и - координаты центра подвижной системы координат в неподвижной системе ; и - координаты точки профиля в подвижной системе координта; и - координаты точки профиля в неподвижной системе координат.

При повороте детали начало координат подвижной системы перемещается по циклоиде, система уравнений которой, имеет вид:

(1.4)

Подставив в уравнение (1.2) значения , , и из (1.3) и (1.4) и выполнив математические преобразования можно получить уравнение:

Переменив знаки, приведя к общему знаменателю и разделив на можно получить уравнение семейства профилей детали:

(1.5)

Для определения огибающей полученного семейства профилей детали необходимо продифференцировать выражение (1.4) в частных производных по параметру φ и приравнять ее к нулю:

(1.6)

Подставив выражение (1.6) в уравнение семейства (1.5), можно найти:

(1.7)

Итак, система уравнений профиля червячной фрезы как огибающей семейства профилей изделия имеет вид:

(1.8)

Примечания: 1. В формулах (1.8) при расчете профиля фрезы углы брать в радианах.

2. Расчет необходимо производить с точностью до шестого знака; тригонометрические функции вычислять с точностью до угловых секунд.

Полученные уравнения (1.8) в параметрической форме дают координаты точек огибающей семейства, т.е. координаты профиля фрезы. Давая различные значения углам φ, получим несколько точек искомой кривой, по которым строится профиль инструмента.

После определения профиля фрезы для упрощения технологии изготовления фрез производят замену теоретического профиля дугами одной или двух окружностей, находя центр заменяющей окружности и ее радиус. При этом учитывается, что сумма положительных и отрицательных отклонений не должна превышать 2/3 допуска δ на прямолинейность профиля валика: (рис. 1.2.).

Рис. 1.2. Замена теоретического профиля дугой окружности

 







Дата добавления: 2015-08-30; просмотров: 735. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия