Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Элементы классической теории огибания





Классическая теория огибания применяет средства дифференциальной геометрии и рассматривает вопросы нахождения огибающей к однопараметрическому семейству поверхностей, заданному неявным уравнением, векторным уравнением, а также огибающей двухпараметрического семейства и винтовые поверхности как огибающие поверхности в её винтовом движении. Суть классической теории огибания состоит в том, что огибающая семейства поверхностей определяется системой уравнений:

(1.1)

где - функция, задающая однопараметрическое семейство поверхностей ; - частная производная по переменной .

При переменном значении система (1.1) определяет геометрическое место характеристик , называемое дискриминантной поверхностью. Уравнение последней может быть получено исключением из системы (1.1).

Огибающей семейства поверхностей называется поверхность , которая в некоторой окрестности для каждого значения касается поверхности вдоль кривой на , непрерывно меняются с . Она существует при следующих условиях. Пусть функция обладает в некоторой области пространства непрерывными частными производными , , , не обращающимися одновременно в нуль: . Это означает, что в данной области точки поверхности не являются особыми.

Аналогичными являются условия существования огибающей двухпараметрического семейства поверхностей.

Примером применения классической теории огибания является определения кривой профиля червячной фрезы для обработки шлицевых валиков.







Дата добавления: 2015-08-30; просмотров: 890. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Вопрос 1. Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации К коллективным средствам защиты относятся: вентиляция, отопление, освещение, защита от шума и вибрации...

Задержки и неисправности пистолета Макарова 1.Что может произойти при стрельбе из пистолета, если загрязнятся пазы на рамке...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия