Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Элементы классической теории огибания





Классическая теория огибания применяет средства дифференциальной геометрии и рассматривает вопросы нахождения огибающей к однопараметрическому семейству поверхностей, заданному неявным уравнением, векторным уравнением, а также огибающей двухпараметрического семейства и винтовые поверхности как огибающие поверхности в её винтовом движении. Суть классической теории огибания состоит в том, что огибающая семейства поверхностей определяется системой уравнений:

(1.1)

где - функция, задающая однопараметрическое семейство поверхностей ; - частная производная по переменной .

При переменном значении система (1.1) определяет геометрическое место характеристик , называемое дискриминантной поверхностью. Уравнение последней может быть получено исключением из системы (1.1).

Огибающей семейства поверхностей называется поверхность , которая в некоторой окрестности для каждого значения касается поверхности вдоль кривой на , непрерывно меняются с . Она существует при следующих условиях. Пусть функция обладает в некоторой области пространства непрерывными частными производными , , , не обращающимися одновременно в нуль: . Это означает, что в данной области точки поверхности не являются особыми.

Аналогичными являются условия существования огибающей двухпараметрического семейства поверхностей.

Примером применения классической теории огибания является определения кривой профиля червячной фрезы для обработки шлицевых валиков.







Дата добавления: 2015-08-30; просмотров: 890. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Studopedia.info - Студопедия - 2014-2026 год . (0.009 сек.) русская версия | украинская версия