Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Элементы классической теории огибания





Классическая теория огибания применяет средства дифференциальной геометрии и рассматривает вопросы нахождения огибающей к однопараметрическому семейству поверхностей, заданному неявным уравнением, векторным уравнением, а также огибающей двухпараметрического семейства и винтовые поверхности как огибающие поверхности в её винтовом движении. Суть классической теории огибания состоит в том, что огибающая семейства поверхностей определяется системой уравнений:

(1.1)

где - функция, задающая однопараметрическое семейство поверхностей ; - частная производная по переменной .

При переменном значении система (1.1) определяет геометрическое место характеристик , называемое дискриминантной поверхностью. Уравнение последней может быть получено исключением из системы (1.1).

Огибающей семейства поверхностей называется поверхность , которая в некоторой окрестности для каждого значения касается поверхности вдоль кривой на , непрерывно меняются с . Она существует при следующих условиях. Пусть функция обладает в некоторой области пространства непрерывными частными производными , , , не обращающимися одновременно в нуль: . Это означает, что в данной области точки поверхности не являются особыми.

Аналогичными являются условия существования огибающей двухпараметрического семейства поверхностей.

Примером применения классической теории огибания является определения кривой профиля червячной фрезы для обработки шлицевых валиков.







Дата добавления: 2015-08-30; просмотров: 890. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Гальванического элемента При контакте двух любых фаз на границе их раздела возникает двойной электрический слой (ДЭС), состоящий из равных по величине, но противоположных по знаку электрических зарядов...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия