Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ПРИЛОЖЕНИЕ 1.С





В задачах 1.9 и 1.10 исходный вопрос решается путем нахождения определителя и сравнения его с нулем. В случае, когда элементы определителя заданы точно, следует вычислить определитель и правильно ответить на поставленный в задаче вопрос.

В случае, когда элементы определителя заданы приближенно с относительной погрешностью d, дело обстоит сложнее. Пусть элементы матрицы обозначены через . Тогда каждый элемент матрицы теперь уже не равен конкретному значению, а может принимать любое значение из oтрезка [ (1 - d); (1 + d) ], если > 0, и из отрезка [ (1 + d); (1 - d) ], если < 0. Множество всех возможных значений элементов матрицы представляет собой замкнутое ограниченное множество в 9-мерном пространстве. Сам определитель является непрерывной и дифференцируемой функцией 9 переменных - элементов матрицы . По известной теореме Вейерштрасса эта функция достигает на указанном множестве своего наибольшего и наименьшего значений M и m. Если отрезок [ m, M ] не содержит точку 0, то это означает, что при всевозможных допустимых значениях элементов матрицы определитель не обращается в 0. Если же точка 0 принадлежит отрезку [ m, M ], такое утверждение будет неправомерным. Будет иметь место неопределённость.

Нахождению значений m и M помогают следующие рассуждения. Как функция своих аргументов (элементов матрицы ) определитель обладает таким свойством (принцип максимума): эта функция достигает своего наибольшего и наименьшего значений всегда на границе области. Более того, можно доказать, что эти значения достигаются в точках, координаты которых имеют вид (1 ± d). Таких точек 2 = 512. В каждой из них следует вычислить определитель, а затем выбрать из полученных значений самое большое и самое маленькое. Это и будут числа M и m.

 

ЛИТЕРАТУРА

1. Амосов А.А., Дубинский Ю.А., Копченова Н.В. Вычислительные методы для инженеров. М.: Высшая школа, 1994.

 

Вопросы и задачи
к защите лабораторной работы “Теория погрешностей и машинная арифметика”

1. Источники и классификация погрешностей. Приближенные числа. Абсолютная и относительная погрешности. Верные и значащие цифры. Способы округления.

2. Представление чисел в ЭВМ. Машинный нуль, машинная бесконечность, машинное эпсилон. Алгоритмы вычисления.

3. Погрешности арифметических операций над приближенными числами.

4. Погрешность вычисления функций одной и нескольких переменных.

5. Погрешность вычисления неявной функции.

6. Числа заданы приближенно:
, ,
, ,
, .
Записать эти числа со всеми верными знаками.

7. Приближенное число a содержит 5 верных цифр. Что можно сказать об относительной погрешности числа a?

8. С какой относительной погрешностью нужно найти приближенное значение числа a, чтобы верными оказались 5 значащих цифр?

9. Для приближенных чисел a и b (a > b >0) известно, что (a)= (b)= . Оценить погрешности:
а) (a+b), b) (a-b), c) (a*b), d) (a/b).

10. Числа заданы приближенно: , , . Оценить погрешности:
a) разности , b) произведения .
Записать ответ с учетом верных цифр.

11. Указать правила оценки абсолютных и относительных погрешностей функций
a) , b) , c) .

12. Функция вычисляется при значениях , ,
. Найти значения . Записать результат со всеми верными цифрами.

13. Коэффициенты вычисляются с относительной погрешностью (a)= (b)= (с)= . Найти максимальную погрешность, с которой могут вычисляться корни уравнений:
a) , b) .

14. Функция вычисляется при значениях . Определить при каких значениях ответ будет содержать 3 верные цифры.

15. Корни уравнения нужно получить с четырьмя верными цифрами. С каким числом верных цифр нужно взять свободный член уравнения?

 

Литература

1. Амосов А.А., Дубинский Ю.А., Копченова Н.В. “Вычислительные методы для инженеров”. М.: Высшая школа, 1994.

2. Бахвалов Н.С., Лапин А.В., Чижонков Е.В. “Численные методы в задачах и упражнениях”. М.: Высшая школа, 2000.

3. Сборник задач по методам вычислений. Под ред. Монастырного П.И.. М.: Физматлит, 1994.


 







Дата добавления: 2015-09-19; просмотров: 969. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

БИОХИМИЯ ТКАНЕЙ ЗУБА В составе зуба выделяют минерализованные и неминерализованные ткани...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия