Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение системы методом Крамера





 

Порядок выполнения работы.

 

1. Вычисляем D определитель матрицы А.

2. Зададим матрицу DX1, заменой первого столбца матрицы А, матрицей b. Вычисляем определитель матрицы DX1.

3. Зададим матрицу DX2, заменой второго столбца матрицы А, матрицей b. Вычисляем определитель матрицы DX2.

4. Зададим матрицу DX3, заменой третьего столбца матрицы А, матрицей b. Вычисляем определитель матрицы DX3.

5. Определяем решение системы линейных уравнений x1, x2, x3.

 

 
 

 

 

Решение системы линейных алгебраических уравнение методом простых итераций

Порядок выполнения задания

1. Введите матрицы C и d.

2. Преобразуйте исходную систему Cx=d к виду x=b+Ax.

3. Определите нулевое приближение решения.

4. Задайте количество итераций.

5. Вычислите последовательные приближения.

6.Решение системы линейных алгебраических уравнений методом Зейделя

Порядок выполнения задания

1. Введите матрицы С и d.

2. Преобразуйте систему Cx=d к виду x=b+A1x+A2x.

3. Определите нулевое приближение решения.

4. Задайте количество итераций.

5. Вычислите последовательные приближения.

 

Таблица 2

№ вар.  
    0.35 0.12 - 0.13 0.12 0.71 0.15 - 0.13 0.15 0.63 0.10 0.26 0.38
  0.71 0.10 - 0.10 0.10 0.34 0.64 0.12 - 0.04 0.56 0.29 0.32 - 0.10
  0.34 - 0.04 0.06 - 0.04 0.44 0.56 0.10 - 0.12 0.39 0.33 - 0.05 0.28
  0.10 - 0.04 - 0.43 - 0.04 0.34 0.05 - 0.63 0.05 0.13 - 0.15 0.31 0.37
  0.63 0.05 0.15 0.05 0.34 0.10 0.15 0.10 0.71 0.34 0.32 0.42
    1.20 - 0.50 - 0.30 - 0.20 1.70 0.10 0.30 - 1.60 - 1.50 - 0.60 0.30 0.40
  0.30 - 0.10 - 1.50 1.20 - 0.20 - 0.30 - 0.20 1.60 0.10 - 0.60 0.30 0.70
  0.20 0.58 0.05 0.44 - 0.29 0.34 0.91 0.05 0.10 0.74 0.02 0.32
    6.36 7.42 1.77 1.75 19.03 0.42 1.0 1.75 6.36 41.70 49.49 27.67
  3.11 - 1.65 0.60 - 1.66 3.15 0.78 - 0.60 - 0.78 - 2.97 - 0.92 2.57 1.65

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. К какому типу - прямому или итерационному - относится метод Гаусса?

2. В чем заключается прямой и обратный ход в схеме единственного деления?

3. Как организуется, контроль над вычислениями в прямом и обратном ходе?

4. Как строится итерационная последовательность для нахождения решения системы линейных уравнений?

5. Как формулируется достаточные условия сходимости итерационного процесса?

6. Как эти условия связаны с выбором метрики пространства?

7. В чем отличие итерационного процесса метода Зейделя от аналогичного процесса метода простой итерации?

 

Лабораторная работа №5

Тема: Интерполирование функций

Мета: закріплення теоретичних знань; набуття практичних навичок обчислення у роботі В MATHCAD

Робоче місце: учбове місце в кабінеті (комп’ютерний клас)

Тривалість заняття: 90 хв.

Метеріально-технічне оснащення: методичні вказівки, комп’ютер

Хід роботи

 

Пусть функция задана таблично, либо вычисление ее требует громоздких выкладок. Заменим приближенно функцию на какую-либо функцию , так, чтобы отклонение от было в заданной области в некотором смысле минимальным. Подобная замена называется аппроксимацией функции , а функция – аппроксимирующей (приближающей) функцией.

Классический подход к решению задачи построения приближающей функции основывается на требование строгого совпадения значений и в точках (, т. е.

. (3.1)

В этом случае нахождение приближенной функции называют интерполяцией (или интерполированием), точки – узлами интерполяции.

Часто интерполирование ведется для функций, заданных таблицами с равноотстоящими значениями аргумента . В этом случае шаг таблицы является величиной постоянной. Для таких таблиц построение интерполяционных формул (как, впрочем, и вычисление по этим формулам) заметно упрощается.

 







Дата добавления: 2015-09-19; просмотров: 837. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Упражнение Джеффа. Это список вопросов или утверждений, отвечая на которые участник может раскрыть свой внутренний мир перед другими участниками и узнать о других участниках больше...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия