Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Однородные.





Линейные однородные ДУ 2-го порядка с постоянными коэффициентами имеют вид:

(8)

где р 1 и р 2 — действительные числа.

Согласно теореме о структуре общего решения линейного однородного ДУ достаточно найти два линейно независимых частных решения и уравнения (12), чтобы записать общее решение:

Где y00 – общее решение однородного уравнения.

Будем искать решение уравнения (8) в виде где некоторая постоянная. Чтобы определить подставим в уравнение (8).
В результате подстановки получим уравнение

Так как то

(9)

Квадратное уравнение (9) называют характеристическим уравнением для ДУ (8), а его корни и характеристическими числами. При решении характеристического уравнения (9) могут возникнуть три случая:

а) Корни и действительные и различные. Тогда общее решение уравнения (8) будет иметь вид:

(10)

б) Корни и действительные и равные, Общее решение уравнения (8) будет иметь вид:

(11)

в) Корни и комплексно сопряженные, Тогда общее решение уравнения (8) примет вид:

(12)

Пример 13. Найти общие решения линейных однородных ДУ 2-го порядка с постоянными коэффициентами:

а) б)

в) г)

Решение.

а) Составим характеристическое уравнение:

Решим его, используя формулу корней квадратного уравнения:

Получим корни:

Поскольку и то общее решение запишем в виде (10):

б)

Характеристическое уравнение:

его корни найдем по формуле корней квадратного уравнения:

Поскольку то общее решение запишем в виде (11):

в)

Характеристическое уравнение:

его корни найдем по формуле корней квадратного уравнения:

Получим комплексно сопряженные корни где а =1, b =4.

Решение запишем в виде (12):

г)

Характеристическое уравнение:

Решим его:

— комплексно сопряженные корни вида где а = 0, b = 1,3. Решение запишем в виде (16), при этом учтем, что







Дата добавления: 2015-09-19; просмотров: 429. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия