Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Векторная алгебра и аналитическая геометрия.





 

студентами направления 080100 «Экономика»

профиль «Финансы и кредит»

заочной формы обучения

 

 

Формат 60×94 1/16.

Усл. п.л. 0,75 Тираж 30 экз.

Брянская государственная инженерно-технологическая академия.

241037. г. Брянск, пр. Станке Димитрова, 3, редакционно-издательский отдел.

Подразделение оперативной печати

 

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

(ДГТУ)

 

КАФЕДРА «МАТЕМАТИКА»

 

КОНТРОЛЬНАЯ РАБОТА ПО КУРСУ МАТЕМАТИКИ

ДЛЯ СТУДЕНТОВ

ЗАОЧНОЙ ФОРМЫ ОБУЧЕНИЯ


ГУМАНИТАРНЫХ НАПРАВЛЕНИЙ

 

 

Ростов-на-Дону 2013

 

 

Составитель: Волокитин Г.И.

 

Программа и варианты контрольной работы по математике для студентов гуманитарных направлений первого курса заочной формы обучения: Методические указания / ДГТУ. Ростов н/Д: Издательский центр ДГТУ, 2013. – с.46

 

Методическая разработка предназначена для студентов заочной формы обучения гуманитарных направлений 034300, 100400, 100400S, 034700, 034700S, 111400. Содержит программу изучения основных разделов курса математики, включающую темы: «Линейная алгебра», «Векторная алгебра и аналитическая геометрия», «Введение в анализ», «Дифференциальное исчисление», «Интегральное исчисление», «Дифференциальные уравнения», «Теория вероятностей и математическая статистика». Указана рекомендуемая литература, а также 10 вариантов заданий контрольной работы (первый семестр). Даны образцы решения всех задач. Номер варианта в задаче студент определяет по последней цифре номера зачетной книжки. Цифра 0 соответствует варианту №10.

 

 

Рецензент: к.ф.-м.н., доц. Ворович Е.И. (ДГТУ, г. Ростов-на-Дону)

 

Научный редактор: д.ф.-м.н., проф. Ларченко В.В.

 

© Издательский центр ДГТУ, 2013


Экзаменационная программа по математике

Для студентов 1-го курса заочного факультета.

Элементы линейной алгебры.

Матрицы, виды матриц и действия с матрицами. Числовые характеристики матриц. Определители второго и третьего порядков: определения, свойства и способы вычисления. Элементарные преобразования матриц. Обратная матрица: определение, критерий существования и способы вычисления обратной матрицы. Базисный минор и ранг матрицы. Системы линейны алгебраических уравнений, их виды. Теорема Кронекера-Капелли. Решение определенных систем третьего порядка методом Крамера, матричным методом и методом Гаусса. Общее решение однородных и неоднородных неопределенных систем. Понятие линейного пространства. Линейный оператор, матрица линейного оператора

Векторная алгебра и аналитическая геометрия.

Понятие геометрического вектора. Проекция вектора на ось. Линейные операции над векторами. Линейная независимость векторов, базис на плоскости и в пространстве. Координаты вектора, их геометрический смысл. Действия с векторами в координатах. Условие коллинеарности векторов. Скалярное произведение двух векторов: определение, свойства, вычисление в координатах и приложения. Векторное произведение двух векторов: определение, свойства, вычисление в координатах и приложения. Смешанное произведение трех векторов, теорема о геометрическом смысле, вычисление в координатах и свойства. Условие компланарности трех векторов.

Прямая на плоскости. Угловой коэффициент прямой. Различные виды уравнений прямой (каноническое уравнение, общее, «в отрезках», нормальное). Угол между прямыми. Расстояние от точки до прямой.

 

 

Плоскость: нормальный вектор, общее уравнение плоскости. Различные виды уравнений плоскости («в отрезках», нормальное уравнение). Угол между плоскостями, расстояние от точки до плоскости.

Прямая в пространстве: канонические, параметрические уравнения. Прямая как пересечение двух плоскостей. Угол между прямыми и угол между прямой и плоскостью.

Системы координат на плоскости: прямоугольная и полярная. Системы координат в пространстве: прямоугольная, цилиндрическая и сферическая. Кривые второго порядка: определения и канонические уравнения эллипса, окружности, гиперболы и параболы. Поверхности второго порядка: Эллипсоиды, сфера, однополостный и двуполостный гиперболоиды, эллиптический и гиперболический параболоиды. Конус второго порядка. Цилиндры второго порядка.







Дата добавления: 2015-09-19; просмотров: 475. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия