Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Обыкновенные ДУ. Общие понятия и положения теории дифференциальных уравнений.





В математике часто встречаются уравнения, в которые, кроме неизвестной переменной (или нескольких переменных) входит неизвестная функция и ее производные (частные производные). Такие уравнения называются дифференциальными уравнениями.

Если функция зависит от одной переменной, то такое уравнение называют обыкновенным дифференциальным уравнением – ОДУ. Если же функция зависит от нескольких переменных, то такое уравнение называют (дифференциальным) уравнением в частных производных – ДУвЧП. Исторически дифференциальные уравнения возникли из задач механики, в которых участвовали координаты тел, их скорости и ускорения, рассматриваемые как функции времени.

В данном пособии будут рассматриваться обыкновенные дифференциальные уравнения.

Уравнение вида

(1)

называется ОДУ n-го порядка из-за того, что максимальный порядок производной в этом уравнении равен n.

Пример: второй закон Ньютона представляется в виде ОДУ второго порядка

,

где где m — масса тела, x — его координата, F(x,t) — внешняя сила, действующее на тело с координатой x в момент времени t, вторая производная x по времени t. Решением этого уравнения является траектория движения тела под действием указанной силы.

Общим решением дифференциального уравнения называют функцию , которая при подстановке в дифференциальное уравнение вида обращает его в тождество. Постоянные являются константами интегрирования.

Пример:

Рассмотрим уравнение . Это ОДУ первого порядка. Очевидно, что функция, например, является решением этого уравнения (это легко проверить, просто посчитав производную функции). Но решением будет также и функция и . Аналогично можно показать, что любое решение вида , где С – произвольная постоянная, является решением данного уравнения. Функции такого вида и являются общим решением ДУ .

Частным решением ДУ называют функцию вида , которая при подстановке ее в дифференциальное уравнение вида обращает уравнение в тождество.

Пример:

Все функции y1, y2 и y3 из предыдущего примера являются частными решениями уравнения .

Таким образом, можно сказать, что общее решение ДУ это совокупность всех его частных решений.

Задачей Коши или начальной задачей для ОДУ n-го порядка называется совокупность самого дифференциального уравнения и начальных условий, т.е. значений функции и ее производных до n-1 порядка включительно, заданных в одной точке:

(2)

При определенных, достаточно общих ограничениях на функцию F (которые здесь оговаривать не будем) задача Коши имеет решение, и оно является единственным.

Число начальных условий задачи Коши должно соответствовать порядку дифференциального уравнения для однозначного нахождения всех неизвестных постоянных интегрирования . Решение задачи Коши является частным решением ОДУ.

Пример: поставлена задача Коши для ОДУ первого порядка.

Общее решение этого ОДУ, как показано выше, имеет вид . Подставляя в него начальное условие, получаем: , откуда находим значение постоянной . Таким образом, решение задачи Коши примет вид .

На рисунке представлены несколько графиков, соответствующих четырем частным решениям некоторого ОДУ. Допустим, надо найти решение задачи Коши с начальными условиями , т.е. изо всей совокупности частных решений (общее решение) надо выбрать то, график которого проходит через точку с координатами (2,3).







Дата добавления: 2015-09-19; просмотров: 758. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия