Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ОДУ первого порядка с разделяющимися переменными.





Если в результате каких-либо преобразований ДУ первого порядка удалось привести к виду

, (3)

то говорят, что это дифференциальное уравнение является уравнением с разделяющимися переменными (переменные «разделились» по разные стороны от знака равенства). Тогда решение этого ДУ может быть найдено в квадратурах:

, где - первообразные функций и соответственно.

Пример 10. Найти общее решение ДУ:

Решение.

Представим производную как отношение дифференциалов:

Разнесем слагаемые по разные стороны от знака равенства:

, откуда .

Получили уравнение с разделяющимися переменными, откуда, интегрируя правую и левую части, получим:

. Знак постоянной С выбран отрицательным для того, чтобы можно было чуть упростить решение, отбросив знак минус.

.

Это выражение и является общим решением ДУ.

 

Пример 10. Найти решение задачи Коши для ДУ:

с начальным условием .

Решение.

Подставим в полученное выражение начальное условие:

Решение задачи Коши:

Обыкновенное дифференциальное уравнение называется однородным если при замене , а оно не меняется.

Другими словами, если уравнение можно привести к виду

(4)

где f – любая функция, то оно является однородным.

Однородное уравнение приводится к уравнению с разделяющимися переменными типа (3) с помощью подстановки .

Пример11: решить уравнение .

Покажем, что это уравнение однородное. Для этого поделим его обе части на .

Поделив почленно правую часть на x:

.

Слева стоит производная y, а справа функция, зависящая только от . Уравнение является однородным. Применим замену .

Сократим на u и поделим на x:

Возвращаясь к исходной неизвестной функции

.

Кроме этого, есть еще решение , которое было потеряно при делении на x.







Дата добавления: 2015-09-19; просмотров: 495. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия