Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Теория вероятностей. 1. Элементы комбинаторики Размещениями m из n элементов называются m - элементные подмножества множества Е={a1,a2, ,an}





1. Элементы комбинаторики Размещениями m из n элементов называются m - элементные подмножества множества Е={ a1,a2,…,an }, различающиеся либо набором элементов, либо порядком их следования. Общее число таких различных комбинаций обозначается символом .

Перестановками называются размещения из n по n элементов. Общее число перестановок обозначают символом .

Сочетаниями из n по m элементов называются m- элементные подмножества множества Е={ a1,a2,…,an }, имеющие различный состав элементов. Два сочетания считаются различными, если хотя бы один элемент входит в одну комбинацию, но не входит в другую. Общее число различных сочетаний обозначают символом .

Число размещений, перестановок и сочетаний определяются формулами:

2. Классическое определение вероятности

, где n – общее число элементарных событий (исходов, которые в данном опыте образуют конечную полную группу равновозможных попарно несовместных событий), m – число элементарных событий, благоприятствующих наступлению события А.

3. Геометрическое определение вероятности

. Вероятность попадания точки в какую либо часть А области ; пропорциональна мере (длине, площади, объему и т.д.) этой части и не зависит от ее расположения и формы.

4. Основные свойства вероятности

Вероятность любого события А - число, заключенное между 0 и 1. Вероятность невозможного события равна 0. Вероятность достоверного события равна 1.

Сумма вероятностей противоположных событий равна 1:

Вероятность появления одного из двух несовместных событий равна сумме вероятностей этих событий:

Для любых двух событий A и B имеет место формула (теорема сложения для произвольных событий):

.

Для полной группы несовместных событий

Вероятность произведения двух событий равна произведению вероятности одного из них на условную вероятность другого, вычисленную при условии, что первое имело место:

- теорема умножения.

Если события А и В – независимые, то

- теорема умножения.

5. Формула полной вероятности. Формулы Байеса

Если известно, что событие А может произойти с одним из событий (гипотез), образующих полную группу попарно несовместных событий, то вероятность события А определяется по формуле полной вероятности:

Вероятности гипотез после того как имело место событие А переоценивают по формулам Байеса:

 

6. Если производится n независимых испытаний, в каждом из которых вероятность появления события А одна и та же и равна p (вероятность «успеха»), то вероятность того, что в этих n испытаниях событие А наступит ровно k раз, выражается формулой Бернулли:

Число k0 называется наивероятнейшим числом наступления события А

в n испытаниях по схеме Бернулли, если значение при

не меньше остальных значений. Число можно найти из двойного неравенства:

.

Пример 15. В ящике находится 10 деталей. Из них 3 дефектные. Наудачу отобраны 3 детали. Какова вероятность того, что:

а) все детали дефектные (событие А);

б) только одна деталь дефектная (событие В);

в) все три детали годные (событие С);

г) хотя бы одна деталь дефектная (событие D).

Решение. Используем классическое определение вероятности.

а) Событие А = {выбранные три детали дефектные};

Элементарное событие в данной задаче - комбинация (сочетание) из трех деталей. - общее число способов выбрать 3 детали из имеющихся 10 деталей. (имеется всего один вариант выбора 3 дефектных деталей)

.

б) Событие В = {из трех выбранных деталей 1 деталь дефектная, две детали без дефекта};

,

где - количество вариантов, благоприятствующих появлению события В, при которых 1 дефектная деталь выбирается из группы 3 дефектных и 2 бездефектные детали выбираются из группы 7 бездефектных деталей

Следовательно, .

в) Событие С = {выбранные три детали бездефектные}

.

г) Событие D = {хотя бы одна из трех выбранных деталей бездефектная}. Рассмотрим противоположное событие .

= { среди трех выбранных деталей нет дефектных}. Так как , то .







Дата добавления: 2015-09-19; просмотров: 619. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия