Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Общие сведения. Пусть задана непрерывная функция вещественного аргумента x и требуется численным методом решить уравнение





 

Пусть задана непрерывная функция вещественного аргумента x и требуется численным методом решить уравнение , т.е. найти приближение x* к вещественному корню этого уравнения. Если уравнение имеет несколько вещественных корней, то сначала производят их отделение (изоляцию), а затем уточняют положение отдельного корня. Считается, что отделение корня произведено, если выделен такой интервал [a0, b0] области определения функции , на концах которого значения функции (a0) и (b0) имеют разные знаки и внутри которого имеется ровно один корень уравнения . Для уточнения метода используют итерационные методы, такие как метод бисекции (половинного деления), метод хорд (секущих или ложного положения), метод Ньютона (касательных), метод итераций (последовательных приближений). В указанных методах вычисляются либо последовательность значений границ сужающихся интервалов a0, b0, a1, b1,..., an, bn,..., содержащих корень, либо последовательность приближений к корню x0, x1, x2,..., xn,...[2,7,8,11].

В первом случае итерационный процесс заканчивается, как только длина текущего интервала становится достаточно малой (например, ½bn-an½<e). Во втором случае условием остановки вычислений является малость очередного приращения hn=xn-xn-1, ½hn½<e. В обоих случаях параметр e определяет момент остановки вычислений. Иногда в качестве условия остановки используют условие ½ () ½<e, где - текущее приближение к корню, например, =1/2(an + bn ) в методе бисекции. Выполнение этого условия свидетельствует о малости значения функции в точке , т.е. позволяет считать, что ()»0.

Для каждого итерационного метода можно указать некоторые условия сходимости. Однако не всегда легко проверить или гарантировать выполнение этих условий. Кроме того необходимо учесть особенности машинных вычислений при реализации итерационных методов. На практике эти затруднения обходят, вводя ограничение nmax на число итераций. Такое ограничение предохраняет от "зацикливания" метода, а также позволяет выявить практическое отсутствие сходимости вычислительного процесса.

Целью лабораторных работ, приводимых в данном разделе, является изучение перечисленных выше четырех итерационных методов приближенного решения нелинейных уравнений, при этом каждая работа посвящена одному из них. Для выполнения работ предлагается использовать набор программ - функций, реализующих конкретные численные методы, а также программу - функцию Round, позволяющую моделировать ошибки в исходных данных. Указанные программы (язык C) размещаются в директории LIBR1.

 







Дата добавления: 2015-09-19; просмотров: 447. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Studopedia.info - Студопедия - 2014-2025 год . (0.015 сек.) русская версия | украинская версия