Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ИЗУЧЕНИЕ ПОНЯТИЯ Обусловленности ВЫЧИСЛИТЕЛЬНОЙ задачи





(Лабораторная работа №2)

 

Под обусловленностью вычислительной задачи понимают чувствительность ее решения к малым погрешностям входных данных.

Задачу называют хорошо обусловленной, если малым погрешностям входных данных отвечают малые погрешности решения, и плохо обусловленной, если возможны сильные изменения решения. Количественной мерой степени обусловленности вычислительной задачи является число обусловленности, которое можно интерпретировать как коэффициент возможного возрастания погрешностей в решении по отношению к вызвавшим их погрешностям входных данных. Пусть между абсолютными погрешностями входных данных Х и решения У установлено неравенство

D(y*) £ nD D(x*),

где x* и y* - приближенные входные данные и приближенное решение.

Тогда величина nD называется абсолютным числом обусловленности. Если же установлено неравенство

d(y*) £ nd d(x*)

между относительными ошибками данных и решения, то величину nd называют относительным числом обусловленности. Для плохо обусловленной задачи n>>1. Грубо говоря, если n=10N, где n - относительное число обусловленности, то порядок N показывает число верных цифр, которое может быть утеряно в результате по сравнению с числом верных цифр входных данных.

Ответ на вопрос о том, при каком значении n задачу следует признать плохо обусловленной, зависит, с одной стороны, от предъявляемых требований к точности решения и, с другой, - от уровня обеспечиваемой точности исходных данных. Например, если требуется найти решение с точностью 0.1%, а входная информация задается с точностью 0.02%, то уже значение n=10 сигнализирует о плохой обусловленности. Однако, при тех же требованиях к точности результата, гарантия, что исходные данные задаются с точностью не ниже 0.0001%, означает, что при n=103 задача хорошо обусловлена.

Если рассматривать задачу вычисления корня уравнения Y=f(X), то роль числа обусловленности будет играть величина

где x0 - корень уравнения.

В работе предлагается, используя программы - функции BISECT и Round из файла metods.cpp (файл заголовков metods.h, директория LIBR1), исследовать обусловленность задачи нахождения корня уравнения для линейной функции . Значения функции следует вычислить приближенно с точностью Delta, варьируемой в пределах от 0.1 до 0.000001.

Порядок выполнения работы должен быть следующим:

1) Графически или аналитически отделить корень уравнения , т.е. найти отрезки [Left, Right], на которых функция удовлетворяет условиям применимости метода бисекции (см. Подразделы 3.1 и 3.2).

2) Составить подпрограмму вычисления функции для параметров c и d, вводимых с клавиатуры. Предусмотреть округление вычисленных значений функции с использованием программы-функции Round с точностью Delta, также вводимой с клавиатуры.

3) Составить головную программу, вычисляющую корень уравнения с заданной точностью Eps и содержащую обращение к подпрограмме f(x), программам-функциям BISECT, Round и представление результатов.

4) Провести вычисления по программе, варьируя значения параметров c (тангенс угла наклона прямой), Eps (точность вычисления корня) и Delta (точность задания исходных данных).

5) Проанализировать полученные результаты и обосновать выбор точности Eps вычисления корня. Сопоставить полученные теоретические результаты с экспериментальными данными.

Значение параметра d выбирается каждым студентом самостоятельно и согласовывается с преподавателем.

Текст программы для исследования обусловленности задачи нахождения корня уравнения представлен ниже.

/**********************************************************************/

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

#include <methods.h>

#include <conio.h>

double delta,c,d;

void main()

{

int k;

long int s;

float a1,b1,c1,d1,eps1,delta1;

double a,b,eps,x;

double F(double);

printf("Ââåäèòå eps:");

scanf("%f",&eps1);

eps = eps1;

printf("Ââåäèòå c:");

scanf("%f",&c1);

c = c1;

printf("Ââåäèòå d:");

scanf("%f",&d1);

d = d1;

printf("Ââåäèòå a:");

scanf("%f",&a1);

a = a1;

printf("Ââåäèòå b:");

scanf("%f",&b1);

b = b1;

printf("Ââåäèòå delta:");

scanf("%f",&delta1);

delta = delta1;

x = BISECT(a,b,eps,k);

printf("x=%f k=%d\n",x,k);

}

double F(double x)

{

extern double c,d,delta;

double s;

long int S;

s = c*(x - d);

if(s/delta < 0)

S = s/delta -.5;

else

S = s/delta +.5;

s = S*delta;

s = Round(s,delta);

return(s);

}

/********************************************************/

 







Дата добавления: 2015-09-19; просмотров: 1011. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия