Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Доверительный интервал для коэффициента регрессии определяется как b±t mb.





Поскольку коэффициент регрессии в эконометрических. исследованиях имеет четкую экономическую интерпретацию, то доверительные границы интервала для коэффициента регрессии не должны содержать противоречивых результатов, например, -10 < b < 40. Такого рода запись указывает, что истинное значение коэффициента регрессии одновременно содержит положительные и отрицательные величины и даже ноль, чего не может быть.

gСтандартная ошибка параметра а определяется по формуле:

Процедура оценивания существенности данного параметра не отличается от рассмотренной выше для коэффициента регрессии: вычисляется t-критерий: , его величина сравнивается с табличным значением при (п-2) степенях свободы.

Значимость линейного коэффициента корреляции проверяется на основе величины ошибки коэффициента корреляции mr:

.

Фактическое значение t-критерия Стьюдента определяется как

Данная формула свидетельствует, что в парной линейной регрессии tr2=F, так как . Кроме того, tb2=F, следовательно tr2=tb2.

Таким образом, проверка гипотез о значимости коэффициентов регрессии и корреляции равносильна проверке гипотезы о существенности линейного уравнения регрессии.

Рассмотренная формула оценки коэффициента корреляции рекомендуется к применению при большом числе наблюдений и если r не близко к + 1 или -1. Если же величина коэффициента корреляции близка к + 1, то распределение его оценок отличается от нормального или распределения Стьюдента, так как величина коэффициента корреляции ограничена значениями от -1 до +1. Чтобы обойти это затруднение, Р. Фишером было предложено для оценки существенности rввести вспомогательную величину z, связанную с коэффициентом корреляции следующим отношением:

При изменении r от -1 до +1 величина zизменяется от -¥ до +¥, что соответствует нормальному распределению. Математический анализ доказывает, что распределение величины zмало отличается от нормального даже при близких к единице значениях коэффициента корреляции. Стандартная ошибка величины zопределяется по формуле:

где п — число наблюдений.

Величину z можно не рассчитывать, а воспользоваться готовыми таблицами z-преобразования, в которых приведены значения величины z для соответствующих значений r.

Ввиду того, что zи rсвязаны между собой приведенным выше соотношением, можно вычислить критические значения r, соответствующие каждому из значений r. Таблицы критических значений r разработаны для уровней значимости 0,05 и 0,01 и соответствующего числа степеней свободы. Критические значения rпредполагают справедливость нулевой гипотезы, т. е. rмало отлично от нуля. Если фактическое значение коэффициента корреляции по абсолютной величине превышает табличное, то данное значение r считается существенным. Если же r оказывается меньше табличного, то фактическое значение rнесущественно.

 







Дата добавления: 2015-09-19; просмотров: 1114. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...

Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Тема 2: Анатомо-топографическое строение полостей зубов верхней и нижней челюстей. Полость зуба — это сложная система разветвлений, имеющая разнообразную конфигурацию...

Виды и жанры театрализованных представлений   Проживание бронируется и оплачивается слушателями самостоятельно...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия